These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36799915)

  • 21. Lack of the Major Multifunctional Catalase KatA in Pseudomonas aeruginosa Accelerates Evolution of Antibiotic Resistance in Ciprofloxacin-Treated Biofilms.
    Ahmed MN; Porse A; Abdelsamad A; Sommer M; Høiby N; Ciofu O
    Antimicrob Agents Chemother; 2019 Oct; 63(10):. PubMed ID: 31307984
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antimicrobial and antibiofilm activities of prenylated flavanones from Macaranga tanarius.
    Lee JH; Kim YG; Khadke SK; Yamano A; Woo JT; Lee J
    Phytomedicine; 2019 Oct; 63():153033. PubMed ID: 31352284
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrasound-Activatable Phase-Shift Nanoparticle as a Targeting Antibacterial Agent for Efficient Eradication of
    Xin L; Zhang C; Chen J; Jiang Y; Liu Y; Jin P; Wang X; Wang G; Huang P
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47420-47431. PubMed ID: 36222290
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lactose azocalixarene drug delivery system for the treatment of multidrug-resistant pseudomonas aeruginosa infected diabetic ulcer.
    Li JJ; Hu Y; Hu B; Wang W; Xu H; Hu XY; Ding F; Li HB; Wang KR; Zhang X; Guo DS
    Nat Commun; 2022 Oct; 13(1):6279. PubMed ID: 36270992
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Naringin sensitizes the antibiofilm effect of ciprofloxacin and tetracycline against Pseudomonas aeruginosa biofilm.
    Dey P; Parai D; Banerjee M; Hossain ST; Mukherjee SK
    Int J Med Microbiol; 2020 Apr; 310(3):151410. PubMed ID: 32057619
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro antibiofilm and anti-adhesion effects of magnesium oxide nanoparticles against antibiotic resistant bacteria.
    Hayat S; Muzammil S; Rasool MH; Nisar Z; Hussain SZ; Sabri AN; Jamil S
    Microbiol Immunol; 2018 Apr; 62(4):211-220. PubMed ID: 29405384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of samarium oxide nanoparticles on virulence factors and motility of multi-drug resistant Pseudomonas aeruginosa.
    Zahmatkesh H; Mirpour M; Zamani H; Rasti B; Rahmani FA; Padasht N
    World J Microbiol Biotechnol; 2022 Aug; 38(11):209. PubMed ID: 36040540
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective delivery of silver nanoparticles for improved treatment of biofilm skin infection using bacteria-responsive microparticles loaded into dissolving microneedles.
    Permana AD; Anjani QK; Sartini ; Utomo E; Volpe-Zanutto F; Paredes AJ; Evary YM; Mardikasari SA; Pratama MR; Tuany IN; Donnelly RF
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111786. PubMed ID: 33545912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolution of biofilm-forming pathogenic bacteria in the presence of nanoparticles and antibiotic: adaptation phenomena and cross-resistance.
    Mann R; Holmes A; McNeilly O; Cavaliere R; Sotiriou GA; Rice SA; Gunawan C
    J Nanobiotechnology; 2021 Sep; 19(1):291. PubMed ID: 34579731
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacteria-Targeting Nanoparticles with ROS-Responsive Antibiotic Release to Eradicate Biofilms and Drug-Resistant Bacteria in Endophthalmitis.
    Yu J; Xu H; Wei J; Niu L; Zhu H; Jiang C
    Int J Nanomedicine; 2024; 19():2939-2956. PubMed ID: 38529364
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacterial lipase-responsive polydopamine nanoparticles for detection and synergistic therapy of wound biofilms infection.
    Jiang H; Huang X; Li H; Ren F; Li D; Liu Y; Tong Y; Ran P
    Int J Biol Macromol; 2024 Jun; 270(Pt 2):132350. PubMed ID: 38750839
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anti-biofilm activity of A22 ((S-3,4-dichlorobenzyl) isothiourea hydrochloride) against Pseudomonas aeruginosa: Influence on biofilm formation, motility and bioadhesion.
    Bonez PC; Rossi GG; Bandeira JR; Ramos AP; Mizdal CR; Agertt VA; Dalla Nora ESS; de Souza ME; Dos Santos Alves CF; Dos Santos FS; Gündel A; de Almeida Vaucher R; Santos RCV; de Campos MMA
    Microb Pathog; 2017 Oct; 111():6-13. PubMed ID: 28804018
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ternary nanoparticle complex of antibiotic, polyelectrolyte, and mucolytic enzyme as a potential antibiotic delivery system in bronchiectasis therapy.
    Tran TT; Hadinoto K
    Colloids Surf B Biointerfaces; 2020 Sep; 193():111095. PubMed ID: 32416520
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ciprofloxacin conjugated gold nanorods with pH induced surface charge transformable activities to combat drug resistant bacteria and their biofilms.
    Yin M; Qiao Z; Yan D; Yang M; Yang L; Wan X; Chen H; Luo J; Xiao H
    Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112292. PubMed ID: 34474843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of ZnO nanoparticles on methicillin, vancomycin, linezolid resistance and biofilm formation in Staphylococcus aureus isolates.
    Abdelraheem WM; Khairy RMM; Zaki AI; Zaki SH
    Ann Clin Microbiol Antimicrob; 2021 Aug; 20(1):54. PubMed ID: 34419054
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Does Conjugation of Silver Nanoparticles with Thiosemicarbazide Increase Their Antibacterial Properties?
    Honarmand T; Sharif AP; Salehzadeh A; Jalali A; Nikokar I
    Microb Drug Resist; 2022 Mar; 28(3):293-305. PubMed ID: 35005985
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nano delivery systems to the rescue of ciprofloxacin against resistant bacteria "E. coli; P. aeruginosa; Saureus; and MRSA" and their infections.
    Nwabuife JC; Omolo CA; Govender T
    J Control Release; 2022 Sep; 349():338-353. PubMed ID: 35820538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biosurfactant coated silver and iron oxide nanoparticles with enhanced anti-biofilm and anti-adhesive properties.
    Khalid HF; Tehseen B; Sarwar Y; Hussain SZ; Khan WS; Raza ZA; Bajwa SZ; Kanaras AG; Hussain I; Rehman A
    J Hazard Mater; 2019 Feb; 364():441-448. PubMed ID: 30384254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Virtual screening for novel quorum sensing inhibitors to eradicate biofilm formation of Pseudomonas aeruginosa.
    Zeng Z; Qian L; Cao L; Tan H; Huang Y; Xue X; Shen Y; Zhou S
    Appl Microbiol Biotechnol; 2008 May; 79(1):119-26. PubMed ID: 18330563
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3,6-Di(pyridin-2-yl)-1,2,4,5-tetrazine (pytz)-capped silver nanoparticles (TzAgNPs) inhibit biofilm formation of Pseudomonas aeruginosa: a potential approach toward breaking the wall of biofilm through reactive oxygen species (ROS) generation.
    Chakraborty P; Joardar S; Ray S; Biswas P; Maiti D; Tribedi P
    Folia Microbiol (Praha); 2018 Nov; 63(6):763-772. PubMed ID: 29855854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.