These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36800087)

  • 21. Viral indicators for tracking domestic wastewater contamination in the aquatic environment.
    Farkas K; Walker DI; Adriaenssens EM; McDonald JE; Hillary LS; Malham SK; Jones DL
    Water Res; 2020 Aug; 181():115926. PubMed ID: 32417460
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distributions of Fecal Markers in Wastewater from Different Climatic Zones for Human Fecal Pollution Tracking in Australian Surface Waters.
    Ahmed W; Sidhu JPS; Smith K; Beale DJ; Gyawali P; Toze S
    Appl Environ Microbiol; 2016 Feb; 82(4):1316-1323. PubMed ID: 26682850
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distribution of human fecal marker genes and their association with pathogenic viruses in untreated wastewater determined using quantitative PCR.
    Ahmed W; Bivins A; Payyappat S; Cassidy M; Harrison N; Besley C
    Water Res; 2022 Nov; 226():119093. PubMed ID: 36252296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of the novel crAssphage marker for sewage pollution tracking in storm drain outfalls in Tampa, Florida.
    Ahmed W; Lobos A; Senkbeil J; Peraud J; Gallard J; Harwood VJ
    Water Res; 2018 Mar; 131():142-150. PubMed ID: 29281808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reduction of human fecal markers and enteric viruses in Sydney estuarine waters receiving wet weather overflows.
    Ahmed W; Payyappat S; Cassidy M; Harrison N; Besley C
    Sci Total Environ; 2023 Oct; 896():165008. PubMed ID: 37348731
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative CrAssphage PCR Assays for Human Fecal Pollution Measurement.
    Stachler E; Kelty C; Sivaganesan M; Li X; Bibby K; Shanks OC
    Environ Sci Technol; 2017 Aug; 51(16):9146-9154. PubMed ID: 28700235
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Performance of wastewater reclamation systems in enteric virus removal.
    Prado T; de Castro Bruni A; Barbosa MRF; Garcia SC; de Jesus Melo AM; Sato MIZ
    Sci Total Environ; 2019 Aug; 678():33-42. PubMed ID: 31075600
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intraday variability of indicator and pathogenic viruses in 1-h and 24-h composite wastewater samples: Implications for wastewater-based epidemiology.
    Ahmed W; Bivins A; Bertsch PM; Bibby K; Gyawali P; Sherchan SP; Simpson SL; Thomas KV; Verhagen R; Kitajima M; Mueller JF; Korajkic A
    Environ Res; 2021 Feb; 193():110531. PubMed ID: 33249042
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamics of crAssphage as a human source tracking marker in potentially faecally polluted environments.
    Ballesté E; Pascual-Benito M; Martín-Díaz J; Blanch AR; Lucena F; Muniesa M; Jofre J; García-Aljaro C
    Water Res; 2019 May; 155():233-244. PubMed ID: 30851594
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Release of infectious human enteric viruses by full-scale wastewater utilities.
    Simmons FJ; Xagoraraki I
    Water Res; 2011 Jun; 45(12):3590-8. PubMed ID: 21570703
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Performance Evaluation of Human-Specific Viral Markers and Application of Pepper Mild Mottle Virus and CrAssphage to Environmental Water Samples as Fecal Pollution Markers in the Kathmandu Valley, Nepal.
    Malla B; Ghaju Shrestha R; Tandukar S; Sherchand JB; Haramoto E
    Food Environ Virol; 2019 Sep; 11(3):274-287. PubMed ID: 31087275
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative enteric viruses and coliphage removal during wastewater treatment processes in a sub-tropical environment.
    Sidhu JPS; Sena K; Hodgers L; Palmer A; Toze S
    Sci Total Environ; 2018 Mar; 616-617():669-677. PubMed ID: 29103646
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel crAssphage marker genes ascertain sewage pollution in a recreational lake receiving urban stormwater runoff.
    Ahmed W; Payyappat S; Cassidy M; Besley C; Power K
    Water Res; 2018 Nov; 145():769-778. PubMed ID: 30223182
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessing human-specific CrAssphage recovery after acidification-filtration concentrating method in environmental water.
    Petcharat T; Kongprajug A; Chyerochana N; Sangkaew W; Mongkolsuk S; Sirikanchana K
    Water Environ Res; 2020 Jan; 92(1):35-41. PubMed ID: 31433097
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Viral and Bacterial Fecal Indicators in Untreated Wastewater across the Contiguous United States Exhibit Geospatial Trends.
    Korajkic A; McMinn B; Herrmann MP; Sivaganesan M; Kelty CA; Clinton P; Nash MS; Shanks OC
    Appl Environ Microbiol; 2020 Apr; 86(8):. PubMed ID: 32060019
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Capsid Integrity Detection of Enteric Viruses in Reclaimed Waters.
    Puchades-Colera P; Díaz-Reolid A; Girón-Guzmán I; Cuevas-Ferrando E; Pérez-Cataluña A; Sánchez G
    Viruses; 2024 May; 16(6):. PubMed ID: 38932109
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of crAssphage in water samples and applicability for tracking human faecal pollution.
    García-Aljaro C; Ballesté E; Muniesa M; Jofre J
    Microb Biotechnol; 2017 Nov; 10(6):1775-1780. PubMed ID: 28925595
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Correlation of crAssphage qPCR Markers with Culturable and Molecular Indicators of Human Fecal Pollution in an Impacted Urban Watershed.
    Stachler E; Akyon B; de Carvalho NA; Ference C; Bibby K
    Environ Sci Technol; 2018 Jul; 52(13):7505-7512. PubMed ID: 29874457
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Viral tools for detection of fecal contamination and microbial source tracking in wastewater from food industries and domestic sewage.
    Barrios ME; Blanco Fernández MD; Cammarata RV; Torres C; Mbayed VA
    J Virol Methods; 2018 Dec; 262():79-88. PubMed ID: 30336954
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Normalisation of SARS-CoV-2 concentrations in wastewater: The use of flow, electrical conductivity and crAssphage.
    Langeveld J; Schilperoort R; Heijnen L; Elsinga G; Schapendonk CEM; Fanoy E; de Schepper EIT; Koopmans MPG; de Graaf M; Medema G
    Sci Total Environ; 2023 Mar; 865():161196. PubMed ID: 36581271
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.