BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 36800112)

  • 41. Individually adapted, interactive multiplanar reformations vs. semi-automated coronary segmentation and curved planar reformations for stenosis detection in coronary computed tomography angiography.
    Anders K; Ropers U; Kuettner A; Wechsel M; Daniel WG; Uder M; Achenbach S
    Eur J Radiol; 2011 Oct; 80(1):89-95. PubMed ID: 20619991
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Non-diagnostic coronary artery calcification and stenosis: a correlation of coronary computed tomography angiography and invasive coronary angiography.
    Engel LC; Thai WE; Medina-Zuluaga H; Karolyi M; Sidhu MS; Maurovich-Horvat P; Margey R; Pomerantsev E; Abbara S; Ghoshhajra BB; Hoffmann U; Liew GY
    Acta Radiol; 2017 May; 58(5):528-536. PubMed ID: 27614067
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Artificial intelligence machine learning-based coronary CT fractional flow reserve (CT-FFR
    Mastrodicasa D; Albrecht MH; Schoepf UJ; Varga-Szemes A; Jacobs BE; Gassenmaier S; De Santis D; Eid MH; van Assen M; Tesche C; Mantini C; De Cecco CN
    J Cardiovasc Comput Tomogr; 2019; 13(6):331-335. PubMed ID: 30391256
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Impact of machine-learning-based coronary computed tomography angiography-derived fractional flow reserve on decision-making in patients with severe aortic stenosis undergoing transcatheter aortic valve replacement.
    Brandt V; Schoepf UJ; Aquino GJ; Bekeredjian R; Varga-Szemes A; Emrich T; Bayer RR; Schwarz F; Kroencke TJ; Tesche C; Decker JA
    Eur Radiol; 2022 Sep; 32(9):6008-6016. PubMed ID: 35359166
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A study of noninvasive fractional flow reserve derived from a simplified method based on coronary computed tomography angiography in suspected coronary artery disease.
    Shi C; Zhang D; Cao K; Zhang T; Luo L; Liu X; Zhang H
    Biomed Eng Online; 2017 Apr; 16(1):43. PubMed ID: 28407768
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Deep learning reconstruction algorithm for coronary CT angiography in assessing obstructive coronary artery disease caused by calcified lesions: the clinical application value].
    Xu C; Yi Y; Li YY; Guo YB; Jin ZY; Wang YN
    Zhonghua Yi Xue Za Zhi; 2021 Oct; 101(39):3202-3207. PubMed ID: 34689531
    [No Abstract]   [Full Text] [Related]  

  • 47. One-year outcomes of CCTA alone versus machine learning-based FFR
    Qiao HY; Tang CX; Schoepf UJ; Bayer RR; Tesche C; Di Jiang M; Yin CQ; Zhou CS; Zhou F; Lu MJ; Jiang JW; Lu GM; Ni QQ; Zhang LJ
    Eur Radiol; 2022 Aug; 32(8):5179-5188. PubMed ID: 35175380
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Diagnostic Performance of CCTA and CT-FFR for the Detection of CAD in TAVR Work-Up.
    Peper J; Becker LM; van den Berg H; Bor WL; Brouwer J; Nijenhuis VJ; van Ginkel DJ; Rensing BJMW; Ten Berg JM; Timmers L; Leiner T; Swaans MJ
    JACC Cardiovasc Interv; 2022 Jun; 15(11):1140-1149. PubMed ID: 35680194
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gender differences in the diagnostic performance of machine learning coronary CT angiography-derived fractional flow reserve -results from the MACHINE registry.
    Baumann S; Renker M; Schoepf UJ; De Cecco CN; Coenen A; De Geer J; Kruk M; Kim YH; Albrecht MH; Duguay TM; Jacobs BE; Bayer RR; Litwin SE; Weiss C; Akin I; Borggrefe M; Yang DH; Kepka C; Persson A; Nieman K; Tesche C
    Eur J Radiol; 2019 Oct; 119():108657. PubMed ID: 31521876
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Diagnostic accuracy of coronary computed tomography angiography for the evaluation of obstructive coronary artery disease in patients referred for transcatheter aortic valve implantation: a systematic review and meta-analysis.
    Gatti M; Gallone G; Poggi V; Bruno F; Serafini A; Depaoli A; De Filippo O; Conrotto F; Darvizeh F; Faletti R; De Ferrari GM; Fonio P; D'Ascenzo F
    Eur Radiol; 2022 Aug; 32(8):5189-5200. PubMed ID: 35192010
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Diagnostic performance of static single-scan stress perfusion cardiac computed tomography in detecting hemodynamically significant coronary artery stenosis: a comparison with combined invasive coronary angiography and cardiovascular magnetic resonance-myocardial perfusion imaging.
    Song I; Yi JG; Park JH; Kim MY; Shin JK; Ko SM
    Acta Radiol; 2018 Oct; 59(10):1184-1193. PubMed ID: 29320864
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CT myocardial perfusion and coronary CT angiography: Influence of coronary calcium on a stress-rest protocol.
    Ladeiras-Lopes R; Bettencourt N; Ferreira N; Sampaio F; Pires-Morais G; Santos L; Melica B; Rodrigues A; Braga P; Leite-Moreira A; Silva-Cardoso J; Gama V
    J Cardiovasc Comput Tomogr; 2016; 10(3):215-20. PubMed ID: 26869367
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influence of coronary stenosis location on diagnostic performance of machine learning-based fractional flow reserve from CT angiography.
    Renker M; Baumann S; Hamm CW; Tesche C; Kim WK; Savage RH; Coenen A; Nieman K; De Geer J; Persson A; Kruk M; Kepka C; Yang DH; Schoepf UJ
    J Cardiovasc Comput Tomogr; 2021; 15(6):492-498. PubMed ID: 34119471
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis.
    Zreik M; Lessmann N; van Hamersvelt RW; Wolterink JM; Voskuil M; Viergever MA; Leiner T; Išgum I
    Med Image Anal; 2018 Feb; 44():72-85. PubMed ID: 29197253
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Diagnostic accuracy of 3D deep-learning-based fully automated estimation of patient-level minimum fractional flow reserve from coronary computed tomography angiography.
    Kumamaru KK; Fujimoto S; Otsuka Y; Kawasaki T; Kawaguchi Y; Kato E; Takamura K; Aoshima C; Kamo Y; Kogure Y; Inage H; Daida H; Aoki S
    Eur Heart J Cardiovasc Imaging; 2020 Apr; 21(4):437-445. PubMed ID: 31230076
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Single-phase coronary artery CT angiography extracted from stress dynamic myocardial CT perfusion on third-generation dual-source CT: Validation by coronary angiography.
    Yi Y; Wu W; Lin L; Zhang HZ; Qian H; Shen ZJ; Wang Y; Jin ZY; Litt H; Wang YN
    Int J Cardiol; 2018 Oct; 269():343-349. PubMed ID: 30224034
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A 2-year investigation of the impact of the computed tomography-derived fractional flow reserve calculated using a deep learning algorithm on routine decision-making for coronary artery disease management.
    Liu X; Mo X; Zhang H; Yang G; Shi C; Hau WK
    Eur Radiol; 2021 Sep; 31(9):7039-7046. PubMed ID: 33630159
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 64-slice multidetector-row computed tomography in the diagnosis of coronary artery disease: interobserver agreement among radiologists with varied levels of experience on a per-patient and per-segment basis.
    Kerl JM; Schoepf UJ; Bauer RW; Tekin T; Costello P; Vogl TJ; Herzog C
    J Thorac Imaging; 2012 Jan; 27(1):29-35. PubMed ID: 21102356
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Diagnostic performance of smartphone reading of the coronary CT angiography in patients with acute chest pain at ED.
    Park JH; Kim YK; Kim B; Kim J; Kwon H; Kim K; Choi SI; Chun EJ
    Am J Emerg Med; 2016 Sep; 34(9):1794-8. PubMed ID: 27396538
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Use of a deep-learning-based lumen extraction method to detect significant stenosis on coronary computed tomography angiography in patients with severe coronary calcification.
    Inage H; Tomizawa N; Otsuka Y; Aoshima C; Kawaguchi Y; Takamura K; Matsumori R; Kamo Y; Nozaki Y; Takahashi D; Kudo A; Hiki M; Kogure Y; Fujimoto S; Minamino T; Aoki S
    Egypt Heart J; 2022 May; 74(1):43. PubMed ID: 35596813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.