These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36800463)

  • 1. Generation of Maximally Entangled Long-Lived States with Giant Atoms in a Waveguide.
    Santos AC; Bachelard R
    Phys Rev Lett; 2023 Feb; 130(5):053601. PubMed ID: 36800463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonreciprocal excitation and entanglement dynamics of two giant atoms mediated by a waveguide.
    Cai G; Ma XS; Huang X; Cheng MT
    Opt Express; 2024 Jan; 32(1):969-986. PubMed ID: 38175117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental certification of millions of genuinely entangled atoms in a solid.
    Fröwis F; Strassmann PC; Tiranov A; Gut C; Lavoie J; Brunner N; Bussières F; Afzelius M; Gisin N
    Nat Commun; 2017 Oct; 8(1):907. PubMed ID: 29030544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entanglement protection of classically driven qubits in a lossy cavity.
    Nourmandipour A; Vafafard A; Mortezapour A; Franzosi R
    Sci Rep; 2021 Aug; 11(1):16259. PubMed ID: 34376732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heralded Bell State of Dissipative Qubits Using Classical Light in a Waveguide.
    Zhang XHH; Baranger HU
    Phys Rev Lett; 2019 Apr; 122(14):140502. PubMed ID: 31050491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Waveguide quantum electrodynamics with superconducting artificial giant atoms.
    Kannan B; Ruckriegel MJ; Campbell DL; Frisk Kockum A; Braumüller J; Kim DK; Kjaergaard M; Krantz P; Melville A; Niedzielski BM; Vepsäläinen A; Winik R; Yoder JL; Nori F; Orlando TP; Gustavsson S; Oliver WD
    Nature; 2020 Jul; 583(7818):775-779. PubMed ID: 32728243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entanglement with negative Wigner function of almost 3,000 atoms heralded by one photon.
    McConnell R; Zhang H; Hu J; Ćuk S; Vuletić V
    Nature; 2015 Mar; 519(7544):439-42. PubMed ID: 25810205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entangled Photon Spectroscopy.
    Eshun A; Varnavski O; Villabona-Monsalve JP; Burdick RK; Goodson T
    Acc Chem Res; 2022 Apr; 55(7):991-1003. PubMed ID: 35312287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entanglement between light and an optical atomic excitation.
    Li L; Dudin YO; Kuzmich A
    Nature; 2013 Jun; 498(7455):466-9. PubMed ID: 23783514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dark entangled steady states of interacting Rydberg atoms.
    Rao DD; Mølmer K
    Phys Rev Lett; 2013 Jul; 111(3):033606. PubMed ID: 23909321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement-Device-Independent Entanglement Witness of Tripartite Entangled States and Its Applications.
    Li ZD; Zhao Q; Zhang R; Liu LZ; Yin XF; Zhang X; Fei YY; Chen K; Liu NL; Xu F; Chen YA; Li L; Pan JW
    Phys Rev Lett; 2020 Apr; 124(16):160503. PubMed ID: 32383895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photon statistics on the extreme entanglement.
    Zhang Y; Zhang J; Yu CS
    Sci Rep; 2016 Apr; 6():24098. PubMed ID: 27053368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interference of Single Photons Emitted by Entangled Atoms in Free Space.
    Araneda G; Higginbottom DB; Slodička L; Colombe Y; Blatt R
    Phys Rev Lett; 2018 May; 120(19):193603. PubMed ID: 29799265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled Cavity-Free, Single-Photon Emission and Bipartite Entanglement of Near-Field-Excited Quantum Emitters.
    Bello F; Kongsuwan N; Donegan JF; Hess O
    Nano Lett; 2020 Aug; 20(8):5830-5836. PubMed ID: 32574498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Persistent quantum beats and long-distance entanglement from waveguide-mediated interactions.
    Zheng H; Baranger HU
    Phys Rev Lett; 2013 Mar; 110(11):113601. PubMed ID: 25166530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cavity quantum electrodynamics with atom-like mirrors.
    Mirhosseini M; Kim E; Zhang X; Sipahigil A; Dieterle PB; Keller AJ; Asenjo-Garcia A; Chang DE; Painter O
    Nature; 2019 May; 569(7758):692-697. PubMed ID: 31092923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entanglement between more than two hundred macroscopic atomic ensembles in a solid.
    Zarkeshian P; Deshmukh C; Sinclair N; Goyal SK; Aguilar GH; Lefebvre P; Puigibert MG; Verma VB; Marsili F; Shaw MD; Nam SW; Heshami K; Oblak D; Tittel W; Simon C
    Nat Commun; 2017 Oct; 8(1):906. PubMed ID: 29030556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement-induced entanglement for excitation stored in remote atomic ensembles.
    Chou CW; de Riedmatten H; Felinto D; Polyakov SV; van Enk SJ; Kimble HJ
    Nature; 2005 Dec; 438(7069):828-32. PubMed ID: 16341008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental entanglement distillation and 'hidden' non-locality.
    Kwiat PG; Barraza-Lopez S; Stefanov A; Gisin N
    Nature; 2001 Feb; 409(6823):1014-7. PubMed ID: 11234004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental long-lived entanglement of two macroscopic objects.
    Julsgaard B; Kozhekin A; Polzik ES
    Nature; 2001 Sep; 413(6854):400-3. PubMed ID: 11574882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.