These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 36800471)

  • 1. Glassy Dynamics in Chiral Fluids.
    Debets VE; Löwen H; Janssen LMC
    Phys Rev Lett; 2023 Feb; 130(5):058201. PubMed ID: 36800471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active glassy dynamics is unaffected by the microscopic details of self-propulsion.
    Debets VE; Janssen LMC
    J Chem Phys; 2022 Dec; 157(22):224902. PubMed ID: 36546821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamical Crystallites of Active Chiral Particles.
    Huang ZF; Menzel AM; Löwen H
    Phys Rev Lett; 2020 Nov; 125(21):218002. PubMed ID: 33274968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collective motion of chiral Brownian particles controlled by a circularly-polarized laser beam.
    Hernández RJ; Sevilla FJ; Mazzulla A; Pagliusi P; Pellizzi N; Cipparrone G
    Soft Matter; 2020 Sep; 16(33):7704-7714. PubMed ID: 32734983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nonequilibrium glassy dynamics of self-propelled particles.
    Flenner E; Szamel G; Berthier L
    Soft Matter; 2016 Sep; 12(34):7136-49. PubMed ID: 27499055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mode-coupling theory for tagged-particle motion of active Brownian particles.
    Reichert J; Mandal S; Voigtmann T
    Phys Rev E; 2021 Oct; 104(4-1):044608. PubMed ID: 34781467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical approach to chiral active systems: Suppressed phase separation of interacting Brownian circle swimmers.
    Bickmann J; Bröker S; Jeggle J; Wittkowski R
    J Chem Phys; 2022 May; 156(19):194904. PubMed ID: 35597664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamical clustering interrupts motility-induced phase separation in chiral active Brownian particles.
    Ma Z; Ni R
    J Chem Phys; 2022 Jan; 156(2):021102. PubMed ID: 35032980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconfigurable emergent patterns in active chiral fluids.
    Zhang B; Sokolov A; Snezhko A
    Nat Commun; 2020 Sep; 11(1):4401. PubMed ID: 32879308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergent vortices and phase separation in systems of chiral active particles with dipolar interactions.
    Liao GJ; Klapp SHL
    Soft Matter; 2021 Jul; 17(28):6833-6847. PubMed ID: 34223596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallizing hard-sphere glasses by doping with active particles.
    Ni R; Cohen Stuart MA; Dijkstra M; Bolhuis PG
    Soft Matter; 2014 Sep; 10(35):6609-13. PubMed ID: 25079244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mode coupling theory for nonequilibrium glassy dynamics of thermal self-propelled particles.
    Feng M; Hou Z
    Soft Matter; 2017 Jun; 13(25):4464-4481. PubMed ID: 28580481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How to study a persistent active glassy system.
    Mandal R; Sollich P
    J Phys Condens Matter; 2021 Apr; 33(18):. PubMed ID: 33730708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamical anomalies and structural features of active Brownian particles characterized by two repulsive length scales.
    Martín-Roca J; Martinez R; Martínez-Pedrero F; Ramírez J; Valeriani C
    J Chem Phys; 2022 Apr; 156(16):164502. PubMed ID: 35490027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aging and rejuvenation of active matter under topological constraints.
    Janssen LMC; Kaiser A; Löwen H
    Sci Rep; 2017 Jul; 7(1):5667. PubMed ID: 28720777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective interactions between inclusions in an active bath.
    Zaeifi Yamchi M; Naji A
    J Chem Phys; 2017 Nov; 147(19):194901. PubMed ID: 29166111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled propulsion and separation of helical particles at the nanoscale.
    Alcanzare MM; Thakore V; Ollila ST; Karttunen M; Ala-Nissila T
    Soft Matter; 2017 Mar; 13(11):2148-2154. PubMed ID: 28225092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glassy dynamics in dense systems of active particles.
    Berthier L; Flenner E; Szamel G
    J Chem Phys; 2019 May; 150(20):200901. PubMed ID: 31153189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Odd viscosity in chiral active fluids.
    Banerjee D; Souslov A; Abanov AG; Vitelli V
    Nat Commun; 2017 Nov; 8(1):1573. PubMed ID: 29146894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.