These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 36800973)
1. The Matthews correlation coefficient (MCC) should replace the ROC AUC as the standard metric for assessing binary classification. Chicco D; Jurman G BioData Min; 2023 Feb; 16(1):4. PubMed ID: 36800973 [TBL] [Abstract][Full Text] [Related]
2. The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation. Chicco D; Tötsch N; Jurman G BioData Min; 2021 Feb; 14(1):13. PubMed ID: 33541410 [TBL] [Abstract][Full Text] [Related]
3. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. Chicco D; Jurman G BMC Genomics; 2020 Jan; 21(1):6. PubMed ID: 31898477 [TBL] [Abstract][Full Text] [Related]
4. Machine learning models predicting multidrug resistant urinary tract infections using "DsaaS". Mancini A; Vito L; Marcelli E; Piangerelli M; De Leone R; Pucciarelli S; Merelli E BMC Bioinformatics; 2020 Aug; 21(Suppl 10):347. PubMed ID: 32838752 [TBL] [Abstract][Full Text] [Related]
5. A statistical comparison between Matthews correlation coefficient (MCC), prevalence threshold, and Fowlkes-Mallows index. Chicco D; Jurman G J Biomed Inform; 2023 Aug; 144():104426. PubMed ID: 37352899 [TBL] [Abstract][Full Text] [Related]
6. Challenges in the real world use of classification accuracy metrics: From recall and precision to the Matthews correlation coefficient. Foody GM PLoS One; 2023; 18(10):e0291908. PubMed ID: 37792898 [TBL] [Abstract][Full Text] [Related]
7. Mind your prevalence! Guesné SJJ; Hanser T; Werner S; Boobier S; Scott S J Cheminform; 2024 Apr; 16(1):43. PubMed ID: 38622648 [TBL] [Abstract][Full Text] [Related]
8. Application of machine learning model in predicting the likelihood of blood transfusion after hip fracture surgery. Chen X; Pan J; Li Y; Tang R Aging Clin Exp Res; 2023 Nov; 35(11):2643-2656. PubMed ID: 37733228 [TBL] [Abstract][Full Text] [Related]
9. Machine learning for the early prediction of infants with electrographic seizures in neonatal hypoxic-ischemic encephalopathy. Pavel AM; O'Toole JM; Proietti J; Livingstone V; Mitra S; Marnane WP; Finder M; Dempsey EM; Murray DM; Boylan GB; Epilepsia; 2023 Feb; 64(2):456-468. PubMed ID: 36398397 [TBL] [Abstract][Full Text] [Related]
10. A new concordant partial AUC and partial c statistic for imbalanced data in the evaluation of machine learning algorithms. Carrington AM; Fieguth PW; Qazi H; Holzinger A; Chen HH; Mayr F; Manuel DG BMC Med Inform Decis Mak; 2020 Jan; 20(1):4. PubMed ID: 31906931 [TBL] [Abstract][Full Text] [Related]
11. Supervised embedding of textual predictors with applications in clinical diagnostics for pediatric cardiology. Perry TE; Zha H; Zhou K; Frias P; Zeng D; Braunstein M J Am Med Inform Assoc; 2014 Feb; 21(e1):e136-42. PubMed ID: 24076750 [TBL] [Abstract][Full Text] [Related]
12. Diagnostic Performance of 2D and 3D T2WI-Based Radiomics Features With Machine Learning Algorithms to Distinguish Solid Solitary Pulmonary Lesion. Wan Q; Zhou J; Xia X; Hu J; Wang P; Peng Y; Zhang T; Sun J; Song Y; Yang G; Li X Front Oncol; 2021; 11():683587. PubMed ID: 34868905 [TBL] [Abstract][Full Text] [Related]
13. Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric. Boughorbel S; Jarray F; El-Anbari M PLoS One; 2017; 12(6):e0177678. PubMed ID: 28574989 [TBL] [Abstract][Full Text] [Related]
14. Identification of cachexia in lung cancer patients with an ensemble learning approach. Jia P; Zhao Q; Wu X; Shen F; Sun K; Wang X Front Nutr; 2024; 11():1380949. PubMed ID: 38873565 [TBL] [Abstract][Full Text] [Related]
15. A novel method detecting the key clinic factors of portal vein system thrombosis of splenectomy & cardia devascularization patients for cirrhosis & portal hypertension. Wang M; Ding L; Xu M; Xie J; Wu S; Xu S; Yao Y; Liu Q BMC Bioinformatics; 2019 Dec; 20(Suppl 22):720. PubMed ID: 31888439 [TBL] [Abstract][Full Text] [Related]
16. A Modified AUC for Training Convolutional Neural Networks: Taking Confidence Into Account. Namdar K; Haider MA; Khalvati F Front Artif Intell; 2021; 4():582928. PubMed ID: 34917933 [TBL] [Abstract][Full Text] [Related]
17. Automated Detection of Driver Fatigue Based on AdaBoost Classifier with EEG Signals. Hu J Front Comput Neurosci; 2017; 11():72. PubMed ID: 28824409 [No Abstract] [Full Text] [Related]
18. Deep ROC Analysis and AUC as Balanced Average Accuracy, for Improved Classifier Selection, Audit and Explanation. Carrington AM; Manuel DG; Fieguth PW; Ramsay T; Osmani V; Wernly B; Bennett C; Hawken S; Magwood O; Sheikh Y; McInnes M; Holzinger A IEEE Trans Pattern Anal Mach Intell; 2023 Jan; 45(1):329-341. PubMed ID: 35077357 [TBL] [Abstract][Full Text] [Related]
19. Optimizing area under the ROC curve using semi-supervised learning. Wang S; Li D; Petrick N; Sahiner B; Linguraru MG; Summers RM Pattern Recognit; 2015 Jan; 48(1):276-287. PubMed ID: 25395692 [TBL] [Abstract][Full Text] [Related]
20. The receiver operating characteristic curve accurately assesses imbalanced datasets. Richardson E; Trevizani R; Greenbaum JA; Carter H; Nielsen M; Peters B Patterns (N Y); 2024 Jun; 5(6):100994. PubMed ID: 39005487 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]