These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 36801233)
1. A satellite-based hybrid model for trophic state evaluation in inland waters across China. Liu Y; Ke Y; Wu H; Zhang C; Chen X Environ Res; 2023 May; 225():115509. PubMed ID: 36801233 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of trophic state for inland waters through combining Forel-Ule Index and inherent optical properties. Liu Y; Wu H; Wang S; Chen X; Kimball JS; Zhang C; Gao H; Guo P Sci Total Environ; 2022 May; 820():153316. PubMed ID: 35066030 [TBL] [Abstract][Full Text] [Related]
3. An optical mechanism-based deep learning approach for deriving water trophic state of China's lakes from Landsat images. Zhang D; Shi K; Wang W; Wang X; Zhang Y; Qin B; Zhu M; Dong B; Zhang Y Water Res; 2024 Mar; 252():121181. PubMed ID: 38301525 [TBL] [Abstract][Full Text] [Related]
4. Estimation of the lake trophic state index (TSI) using hyperspectral remote sensing in Northeast China. Lyu L; Song K; Wen Z; Liu G; Shang Y; Li S; Tao H; Wang X; Hou J Opt Express; 2022 Mar; 30(7):10329-10345. PubMed ID: 35473003 [TBL] [Abstract][Full Text] [Related]
5. An improved algorithm for estimating the Secchi disk depth of inland waters across China based on Sentinel-2 MSI data. Qin Z; Wen Y; Jiang J; Sun Q Environ Sci Pollut Res Int; 2023 Mar; 30(14):41537-41552. PubMed ID: 36633749 [TBL] [Abstract][Full Text] [Related]
6. Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients: Implications for monitoring and assessing lake eutrophication. Zhang Y; Zhou Y; Shi K; Qin B; Yao X; Zhang Y Water Res; 2018 Mar; 131():255-263. PubMed ID: 29304379 [TBL] [Abstract][Full Text] [Related]
7. Quantifying the trophic status of lakes using total light absorption of optically active components. Wen Z; Song K; Liu G; Shang Y; Fang C; Du J; Lyu L Environ Pollut; 2019 Feb; 245():684-693. PubMed ID: 30500747 [TBL] [Abstract][Full Text] [Related]
8. Monitoring trophic status using in situ data and Sentinel-2 MSI algorithm: lesson from Lake Malombe, Malawi. Makwinja R; Inagaki Y; Sagawa T; Obubu JP; Habineza E; Haaziyu W Environ Sci Pollut Res Int; 2023 Mar; 30(11):29755-29772. PubMed ID: 36418816 [TBL] [Abstract][Full Text] [Related]
9. A dataset of trophic state index for nation-scale lakes in China from 40-year Landsat observations. Hu M; Ma R; Xue K; Cao Z; Chen X; Xiong J; Xu J; Huang Z; Yu Z Sci Data; 2024 Jun; 11(1):659. PubMed ID: 38906928 [TBL] [Abstract][Full Text] [Related]
10. Trophic state modeling for shallow freshwater reservoir: a new approach. Markad AT; Landge AT; Nayak BB; Inamdar AB; Mishra AK Environ Monit Assess; 2019 Aug; 191(9):586. PubMed ID: 31440835 [TBL] [Abstract][Full Text] [Related]
11. Multi-sensor satellite and in situ monitoring of phytoplankton development in a eutrophic-mesotrophic lake. Dörnhöfer K; Klinger P; Heege T; Oppelt N Sci Total Environ; 2018 Jan; 612():1200-1214. PubMed ID: 28892864 [TBL] [Abstract][Full Text] [Related]
12. Characterizing Trophic State in Tropical/Subtropical Reservoirs: Deviations among Indexes in the Lower Latitudes. Cunha DGF; Finkler NR; Lamparelli MC; Calijuri MDC; Dodds WK; Carlson RE Environ Manage; 2021 Oct; 68(4):491-504. PubMed ID: 34402965 [TBL] [Abstract][Full Text] [Related]
13. A risk assessment method for remote sensing of cyanobacterial blooms in inland waters. Chen N; Wang S; Zhang X; Yang S Sci Total Environ; 2020 Oct; 740():140012. PubMed ID: 32569911 [TBL] [Abstract][Full Text] [Related]
14. A hybrid remote sensing approach for estimating chemical oxygen demand concentration in optically complex waters: A case study in inland lake waters in eastern China. Cai X; Li Y; Lei S; Zeng S; Zhao Z; Lyu H; Dong X; Li J; Wang H; Xu J; Zhu Y; Wu L; Cheng X Sci Total Environ; 2023 Jan; 856(Pt 1):158869. PubMed ID: 36152846 [TBL] [Abstract][Full Text] [Related]
15. Remote sensing of fluorescent humification levels and its potential environmental linkages in lakes across China. Shang Y; Song K; Lai F; Lyu L; Liu G; Fang C; Hou J; Qiang S; Yu X; Wen Z Water Res; 2023 Feb; 230():119540. PubMed ID: 36608522 [TBL] [Abstract][Full Text] [Related]
16. Monitoring the particulate phosphorus concentration of inland waters on the Yangtze Plain and understanding its relationship with driving factors based on OLCI data. Zeng S; Du C; Li Y; Lyu H; Dong X; Lei S; Li J; Wang H Sci Total Environ; 2022 Feb; 809():151992. PubMed ID: 34883171 [TBL] [Abstract][Full Text] [Related]
17. An operational approach for large-scale mapping of water clarity levels in inland lakes using landsat images based on optical classification. Lu S; Bian Y; Chen F; Lin J; Lyu H; Li Y; Liu H; Zhao Y; Zheng Y; Lyu L Environ Res; 2023 Nov; 237(Pt 1):116898. PubMed ID: 37591322 [TBL] [Abstract][Full Text] [Related]
18. Modification of trophic level index with the contribution of macrophyte and its usage to classify trophic state of shallow lakes. Tao Y; Yu J Environ Sci Pollut Res Int; 2024 Feb; 31(6):9630-9641. PubMed ID: 38194176 [TBL] [Abstract][Full Text] [Related]
19. Bacterial eutrophic index for potential water quality evaluation of a freshwater ecosystem. Ji B; Liang J; Chen R Environ Sci Pollut Res Int; 2020 Sep; 27(26):32449-32455. PubMed ID: 32556977 [TBL] [Abstract][Full Text] [Related]
20. Remote estimates of CDOM using Sentinel-2 remote sensing data in reservoirs with different trophic states across China. Shang Y; Liu G; Wen Z; Jacinthe PA; Song K; Zhang B; Lyu L; Li S; Wang X; Yu X J Environ Manage; 2021 May; 286():112275. PubMed ID: 33684799 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]