These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 36801274)
1. Commercialization potential of agro-based polyhydroxyalkanoates biorefinery: A technical perspective on advances and critical barriers. Kumar V; Lakkaboyana SK; Tsouko E; Maina S; Pandey M; Umesh M; Singhal B; Sharma N; Awasthi MK; Andler R; Jayaraj I; Yuzir A Int J Biol Macromol; 2023 Apr; 234():123733. PubMed ID: 36801274 [TBL] [Abstract][Full Text] [Related]
2. Agro waste as a potential carbon feedstock for poly-3-hydroxy alkanoates production: Commercialization potential and technical hurdles. Ding Z; Kumar V; Sar T; Harirchi S; Dregulo AM; Sirohi R; Sindhu R; Binod P; Liu X; Zhang Z; Taherzadeh MJ; Awasthi MK Bioresour Technol; 2022 Nov; 364():128058. PubMed ID: 36191751 [TBL] [Abstract][Full Text] [Related]
3. Production of polyhydroxyalkanoates from renewable resources: a review on prospects, challenges and applications. Mahato RP; Kumar S; Singh P Arch Microbiol; 2023 Apr; 205(5):172. PubMed ID: 37017747 [TBL] [Abstract][Full Text] [Related]
4. Waste to bioplastics: How close are we to sustainable polyhydroxyalkanoates production? Khatami K; Perez-Zabaleta M; Owusu-Agyeman I; Cetecioglu Z Waste Manag; 2021 Jan; 119():374-388. PubMed ID: 33139190 [TBL] [Abstract][Full Text] [Related]
5. Perceiving biobased plastics as an alternative and innovative solution to combat plastic pollution for a circular economy. Rajvanshi J; Sogani M; Kumar A; Arora S; Syed Z; Sonu K; Gupta NS; Kalra A Sci Total Environ; 2023 May; 874():162441. PubMed ID: 36858235 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and commercialization of bioplastics: Organic waste as a sustainable feedstock. Thomas AP; Kasa VP; Dubey BK; Sen R; Sarmah AK Sci Total Environ; 2023 Dec; 904():167243. PubMed ID: 37741416 [TBL] [Abstract][Full Text] [Related]
8. Opportunities in the microbial valorization of sugar industrial organic waste to biodegradable smart food packaging materials. Jayasekara S; Dissanayake L; Jayakody LN Int J Food Microbiol; 2022 Sep; 377():109785. PubMed ID: 35752069 [TBL] [Abstract][Full Text] [Related]
9. Polyhydroxyalkanoates production in biorefineries: A review on current status, challenges and opportunities. de Mello AFM; Vandenberghe LPS; Machado CMB; Brehmer MS; de Oliveira PZ; Binod P; Sindhu R; Soccol CR Bioresour Technol; 2024 Feb; 393():130078. PubMed ID: 37993072 [TBL] [Abstract][Full Text] [Related]
10. Valorization of polyhydroxyalkanoates production process by co-synthesis of value-added products. Kumar P; Kim BS Bioresour Technol; 2018 Dec; 269():544-556. PubMed ID: 30201320 [TBL] [Abstract][Full Text] [Related]
11. A shortcut to carbon-neutral bioplastic production: Recent advances in microbial production of polyhydroxyalkanoates from C1 resources. Jo SY; Son J; Sohn YJ; Lim SH; Lee JY; Yoo JI; Park SY; Na JG; Park SJ Int J Biol Macromol; 2021 Dec; 192():978-998. PubMed ID: 34656544 [TBL] [Abstract][Full Text] [Related]
12. Production and recovery of polyhydroxyalkanoates (PHA) from waste streams - A review. Yukesh Kannah R; Dinesh Kumar M; Kavitha S; Rajesh Banu J; Kumar Tyagi V; Rajaguru P; Kumar G Bioresour Technol; 2022 Dec; 366():128203. PubMed ID: 36330969 [TBL] [Abstract][Full Text] [Related]
13. Organic waste-to-bioplastics: Conversion with eco-friendly technologies and approaches for sustainable environment. Ali Z; Abdullah M; Yasin MT; Amanat K; Ahmad K; Ahmed I; Qaisrani MM; Khan J Environ Res; 2024 Mar; 244():117949. PubMed ID: 38109961 [TBL] [Abstract][Full Text] [Related]
14. The Role of Bacterial Polyhydroalkanoate (PHA) in a Sustainable Future: A Review on the Biological Diversity. Vicente D; Proença DN; Morais PV Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36833658 [TBL] [Abstract][Full Text] [Related]
15. [The degradation of plastics and the production of polyhydroxyalkanoates (PHA)]. Zhang Z; He H; Zhang X; Zheng S; Zheng T; Liu X; Chen G Sheng Wu Gong Cheng Xue Bao; 2023 May; 39(5):2053-2069. PubMed ID: 37212231 [TBL] [Abstract][Full Text] [Related]
16. Valorization of organic wastes using bioreactors for polyhydroxyalkanoate production: Recent advancement, sustainable approaches, challenges, and future perspectives. Goswami L; Kushwaha A; Napathorn SC; Kim BS Int J Biol Macromol; 2023 Aug; 247():125743. PubMed ID: 37423435 [TBL] [Abstract][Full Text] [Related]
17. Polyhydroxyalkanoates, the bioplastics of microbial origin: Properties, biochemical synthesis, and their applications. Behera S; Priyadarshanee M; Vandana ; Das S Chemosphere; 2022 May; 294():133723. PubMed ID: 35085614 [TBL] [Abstract][Full Text] [Related]
18. Production of polyhydroxyalkanoates as a feasible alternative for an integrated multiproduct lignocellulosic biorefinery. González-Rojo S; Díez-Antolínez R Bioresour Technol; 2023 Oct; 386():129493. PubMed ID: 37460022 [TBL] [Abstract][Full Text] [Related]
19. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. Anjum A; Zuber M; Zia KM; Noreen A; Anjum MN; Tabasum S Int J Biol Macromol; 2016 Aug; 89():161-74. PubMed ID: 27126172 [TBL] [Abstract][Full Text] [Related]
20. Strategies for Biosynthesis of C1 Gas-derived Polyhydroxyalkanoates: A review. Yoon J; Oh MK Bioresour Technol; 2022 Jan; 344(Pt B):126307. PubMed ID: 34767907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]