BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 36801779)

  • 1. Identifiability of soft tissue constitutive parameters from in-vivo macro-indentation.
    Oddes Z; Solav D
    J Mech Behav Biomed Mater; 2023 Apr; 140():105708. PubMed ID: 36801779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of constitutive materials of bi-layer soft tissues from multimodal indentations.
    Fougeron N; Oddes Z; Ashkenazi A; Solav D
    J Mech Behav Biomed Mater; 2024 Jul; 155():106572. PubMed ID: 38754153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macro-indentation testing of soft biological materials and assessment of hyper-elastic material models from inverse finite element analysis.
    Ayyalasomayajula V; Ervik Ø; Sorger H; Skallerud B
    J Mech Behav Biomed Mater; 2024 Mar; 151():106389. PubMed ID: 38211503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spherical indentation method for determining the constitutive parameters of hyperelastic soft materials.
    Zhang MG; Cao YP; Li GY; Feng XQ
    Biomech Model Mechanobiol; 2014 Jan; 13(1):1-11. PubMed ID: 23483348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifiability of tissue material parameters from uniaxial tests using multi-start optimization.
    Safa BN; Santare MH; Ethier CR; Elliott DM
    Acta Biomater; 2021 Mar; 123():197-207. PubMed ID: 33444797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parameter identification of hyperelastic material properties of the heel pad based on an analytical contact mechanics model of a spherical indentation.
    Suzuki R; Ito K; Lee T; Ogihara N
    J Mech Behav Biomed Mater; 2017 Jan; 65():753-760. PubMed ID: 27764748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digital image correlation and finite element modelling as a method to determine mechanical properties of human soft tissue in vivo.
    Moerman KM; Holt CA; Evans SL; Simms CK
    J Biomech; 2009 May; 42(8):1150-3. PubMed ID: 19362312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical characterization of human brain tissue.
    Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA
    Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soft tissue material properties based on human abdominal
    Remus R; Sure C; Selkmann S; Uttich E; Bender B
    Front Bioeng Biotechnol; 2024; 12():1384062. PubMed ID: 38854855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperelastic parameter identification of human articular cartilage and substitute materials.
    Weizel A; Distler T; Detsch R; Boccaccini AR; Bräuer L; Paulsen F; Seitz H; Budday S
    J Mech Behav Biomed Mater; 2022 Sep; 133():105292. PubMed ID: 35689988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method for determining the ogden parameters of soft materials using indentation experiments.
    Li L; Masen M
    J Mech Behav Biomed Mater; 2024 Jul; 155():106574. PubMed ID: 38761525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling and simulation of porcine liver tissue indentation using finite element method and uniaxial stress-strain data.
    Fu YB; Chui CK
    J Biomech; 2014 Jul; 47(10):2430-5. PubMed ID: 24811044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical characterization of porcine liver properties for computational simulation of indentation on cancerous tissue.
    Yang Y; Li K; Sommer G; Yung KL; Holzapfel GA
    Math Med Biol; 2020 Dec; 37(4):469-490. PubMed ID: 32424396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperelastic compressive mechanical properties of the subcalcaneal soft tissue: An inverse finite element analysis.
    Isvilanonda V; Iaquinto JM; Pai S; Mackenzie-Helnwein P; Ledoux WR
    J Biomech; 2016 May; 49(7):1186-1191. PubMed ID: 27040391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining Freehand Ultrasound-Based Indentation and Inverse Finite Element Modeling for the Identification of Hyperelastic Material Properties of Thigh Soft Tissues.
    Fougeron N; Rohan PY; Haering D; Rose JL; Bonnet X; Pillet H
    J Biomech Eng; 2020 Sep; 142(9):. PubMed ID: 32086518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-material 3-D viscoelastic model of a transtibial residuum from in-vivo indentation and MRI data.
    Sengeh DM; Moerman KM; Petron A; Herr H
    J Mech Behav Biomed Mater; 2016 Jun; 59():379-392. PubMed ID: 26946095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A sub-domain inverse finite element characterization of hyperelastic membranes including soft tissues.
    Seshaiyer P; Humphrey JD
    J Biomech Eng; 2003 Jun; 125(3):363-71. PubMed ID: 12929241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recurrent neural network to predict hyperelastic constitutive behaviors of the skeletal muscle.
    Ballit A; Dao TT
    Med Biol Eng Comput; 2022 Apr; 60(4):1177-1185. PubMed ID: 35244859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and parameter identification of a visco-hyperelastic model for the periodontal ligament.
    Huang H; Tang W; Tan Q; Yan B
    J Mech Behav Biomed Mater; 2017 Apr; 68():210-215. PubMed ID: 28187321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the AIC-based model reduction for the general Holzapfel-Ogden myocardial constitutive law.
    Guan D; Ahmad F; Theobald P; Soe S; Luo X; Gao H
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1213-1232. PubMed ID: 30945052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.