These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Comparative Biochemical and Structural Analysis of Novel Cellulose Binding Proteins (Tāpirins) from Extremely Thermophilic Lee LL; Hart WS; Lunin VV; Alahuhta M; Bomble YJ; Himmel ME; Blumer-Schuette SE; Adams MWW; Kelly RM Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478233 [TBL] [Abstract][Full Text] [Related]
4. Functional Analysis of the Glucan Degradation Locus in Caldicellulosiruptor bescii Reveals Essential Roles of Component Glycoside Hydrolases in Plant Biomass Deconstruction. Conway JM; McKinley BS; Seals NL; Hernandez D; Khatibi PA; Poudel S; Giannone RJ; Hettich RL; Williams-Rhaesa AM; Lipscomb GL; Adams MWW; Kelly RM Appl Environ Microbiol; 2017 Dec; 83(24):. PubMed ID: 28986379 [TBL] [Abstract][Full Text] [Related]
5. Bioavailability of Carbohydrate Content in Natural and Transgenic Switchgrasses for the Extreme Thermophile Caldicellulosiruptor bescii. Zurawski JV; Khatibi PA; Akinosho HO; Straub CT; Compton SH; Conway JM; Lee LL; Ragauskas AJ; Davison BH; Adams MWW; Kelly RM Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28625990 [TBL] [Abstract][Full Text] [Related]
6. Biochemical and Regulatory Analyses of Xylanolytic Regulons in Caldicellulosiruptor bescii Reveal Genus-Wide Features of Hemicellulose Utilization. Crosby JR; Laemthong T; Bing RG; Zhang K; Tanwee TNN; Lipscomb GL; Rodionov DA; Zhang Y; Adams MWW; Kelly RM Appl Environ Microbiol; 2022 Nov; 88(21):e0130222. PubMed ID: 36218355 [No Abstract] [Full Text] [Related]
7. Quantitative fermentation of unpretreated transgenic poplar by Caldicellulosiruptor bescii. Straub CT; Khatibi PA; Wang JP; Conway JM; Williams-Rhaesa AM; Peszlen IM; Chiang VL; Adams MWW; Kelly RM Nat Commun; 2019 Aug; 10(1):3548. PubMed ID: 31391460 [TBL] [Abstract][Full Text] [Related]
8. The biology and biotechnology of the genus Caldicellulosiruptor: recent developments in 'Caldi World'. Lee LL; Crosby JR; Rubinstein GM; Laemthong T; Bing RG; Straub CT; Adams MWW; Kelly RM Extremophiles; 2020 Jan; 24(1):1-15. PubMed ID: 31359136 [TBL] [Abstract][Full Text] [Related]
9. Metabolic engineering of Tanwee TNN; Lipscomb GL; Vailionis JL; Zhang K; Bing RG; O'Quinn HC; Poole FL; Zhang Y; Kelly RM; Adams MWW Appl Environ Microbiol; 2024 Jan; 90(1):e0195123. PubMed ID: 38131671 [TBL] [Abstract][Full Text] [Related]
10. Discrete and structurally unique proteins (tāpirins) mediate attachment of extremely thermophilic Caldicellulosiruptor species to cellulose. Blumer-Schuette SE; Alahuhta M; Conway JM; Lee LL; Zurawski JV; Giannone RJ; Hettich RL; Lunin VV; Himmel ME; Kelly RM J Biol Chem; 2015 Apr; 290(17):10645-56. PubMed ID: 25720489 [TBL] [Abstract][Full Text] [Related]
11. Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile Rodionov DA; Rodionova IA; Rodionov VA; Arzamasov AA; Zhang K; Rubinstein GM; Tanwee TNN; Bing RG; Crosby JR; Nookaew I; Basen M; Brown SD; Wilson CM; Klingeman DM; Poole FL; Zhang Y; Kelly RM; Adams MWW mSystems; 2021 Jun; 6(3):e0134520. PubMed ID: 34060910 [TBL] [Abstract][Full Text] [Related]
12. Caldicellulosiruptor bescii Adheres to Polysaccharides via a Type IV Pilin-Dependent Mechanism. Khan AMAM; Hauk VJ; Ibrahim M; Raffel TR; Blumer-Schuette SE Appl Environ Microbiol; 2020 Apr; 86(9):. PubMed ID: 32086304 [TBL] [Abstract][Full Text] [Related]
13. Genus-Wide Assessment of Lignocellulose Utilization in the Extremely Thermophilic Genus Caldicellulosiruptor by Genomic, Pangenomic, and Metagenomic Analyses. Lee LL; Blumer-Schuette SE; Izquierdo JA; Zurawski JV; Loder AJ; Conway JM; Elkins JG; Podar M; Clum A; Jones PC; Piatek MJ; Weighill DA; Jacobson DA; Adams MWW; Kelly RM Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29475869 [TBL] [Abstract][Full Text] [Related]
14. Genomic and physiological analyses reveal that extremely thermophilic Caldicellulosiruptor changbaiensis deploys uncommon cellulose attachment mechanisms. Khan AMAM; Mendoza C; Hauk VJ; Blumer-Schuette SE J Ind Microbiol Biotechnol; 2019 Oct; 46(9-10):1251-1263. PubMed ID: 31392469 [TBL] [Abstract][Full Text] [Related]
15. Plant biomass fermentation by the extreme thermophile Caldicellulosiruptor bescii for co-production of green hydrogen and acetone: Technoeconomic analysis. Bing RG; Straub CT; Sulis DB; Wang JP; Adams MWW; Kelly RM Bioresour Technol; 2022 Mar; 348():126780. PubMed ID: 35093526 [TBL] [Abstract][Full Text] [Related]
16. Use of the lignocellulose-degrading bacterium Straub CT; Bing RG; Wang JP; Chiang VL; Adams MWW; Kelly RM Biotechnol Biofuels; 2020; 13():43. PubMed ID: 32180826 [TBL] [Abstract][Full Text] [Related]
17. Metabolically engineered Caldicellulosiruptor bescii as a platform for producing acetone and hydrogen from lignocellulose. Straub CT; Bing RG; Otten JK; Keller LM; Zeldes BM; Adams MWW; Kelly RM Biotechnol Bioeng; 2020 Dec; 117(12):3799-3808. PubMed ID: 32770740 [TBL] [Abstract][Full Text] [Related]
18. Degradation of microcrystalline cellulose and non-pretreated plant biomass by a cell-free extracellular cellulase/hemicellulase system from the extreme thermophilic bacterium Caldicellulosiruptor bescii. Kanafusa-Shinkai S; Wakayama J; Tsukamoto K; Hayashi N; Miyazaki Y; Ohmori H; Tajima K; Yokoyama H J Biosci Bioeng; 2013 Jan; 115(1):64-70. PubMed ID: 22921519 [TBL] [Abstract][Full Text] [Related]
19. Lignocellulose solubilization and conversion by extremely thermophilic Caldicellulosiruptor bescii improves by maintaining metabolic activity. Straub CT; Khatibi PA; Otten JK; Adams MWW; Kelly RM Biotechnol Bioeng; 2019 Aug; 116(8):1901-1908. PubMed ID: 30982956 [TBL] [Abstract][Full Text] [Related]
20. Deletion of a Peptidylprolyl Isomerase Gene Results in the Inability of Russell JF; Russo ML; Wang X; Hengge N; Chung D; Wells L; Bomble YJ; Westpheling J Appl Environ Microbiol; 2020 Oct; 86(20):. PubMed ID: 32769195 [No Abstract] [Full Text] [Related] [Next] [New Search]