These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 36802247)
21. Engineering the cellulolytic extreme thermophile Caldicellulosiruptor bescii to reduce carboxylic acids to alcohols using plant biomass as the energy source. Rubinstein GM; Lipscomb GL; Williams-Rhaesa AM; Schut GJ; Kelly RM; Adams MWW J Ind Microbiol Biotechnol; 2020 Aug; 47(8):585-597. PubMed ID: 32783103 [TBL] [Abstract][Full Text] [Related]
22. Parsing in vivo and in vitro contributions to microcrystalline cellulose hydrolysis by multidomain glycoside hydrolases in the Caldicellulosiruptor bescii secretome. Conway JM; Crosby JR; McKinley BS; Seals NL; Adams MWW; Kelly RM Biotechnol Bioeng; 2018 Oct; 115(10):2426-2440. PubMed ID: 29969511 [TBL] [Abstract][Full Text] [Related]
23. Coexpression of a β-d-Xylosidase from Thermotoga maritima and a Family 10 Xylanase from Acidothermus cellulolyticus Significantly Improves the Xylan Degradation Activity of the Caldicellulosiruptor bescii Exoproteome. Kim SK; Russell J; Cha M; Himmel ME; Bomble YJ; Westpheling J Appl Environ Microbiol; 2021 Jun; 87(14):e0052421. PubMed ID: 33990300 [No Abstract] [Full Text] [Related]
24. Cloning, expression and purification of cellobiohydrolase gene from Caldicellulosiruptor bescii for efficient saccharification of plant biomass. Aqeel A; Ahmed Z; Akram F; Abbas Q; Ikram-Ul-Haq Int J Biol Macromol; 2024 Jun; 271(Pt 2):132525. PubMed ID: 38797293 [TBL] [Abstract][Full Text] [Related]
25. Deletion of Caldicellulosiruptor bescii CelA reveals its crucial role in the deconstruction of lignocellulosic biomass. Young J; Chung D; Bomble YJ; Himmel ME; Westpheling J Biotechnol Biofuels; 2014; 7(1):142. PubMed ID: 25317205 [TBL] [Abstract][Full Text] [Related]
26. Metabolic engineering of Caldicellulosiruptor bescii for hydrogen production. Cha M; Kim JK; Lee WH; Song H; Lee TG; Kim SK; Kim SJ Appl Microbiol Biotechnol; 2024 Dec; 108(1):65. PubMed ID: 38194138 [TBL] [Abstract][Full Text] [Related]
27. Heterologous co-expression of two β-glucanases and a cellobiose phosphorylase resulted in a significant increase in the cellulolytic activity of the Caldicellulosiruptor bescii exoproteome. Kim SK; Chung D; Himmel ME; Bomble YJ; Westpheling J J Ind Microbiol Biotechnol; 2019 May; 46(5):687-695. PubMed ID: 30783893 [TBL] [Abstract][Full Text] [Related]
28. Comparative Analysis of Extremely Thermophilic Caldicellulosiruptor Species Reveals Common and Unique Cellular Strategies for Plant Biomass Utilization. Zurawski JV; Conway JM; Lee LL; Simpson HJ; Izquierdo JA; Blumer-Schuette S; Nookaew I; Adams MW; Kelly RM Appl Environ Microbiol; 2015 Oct; 81(20):7159-70. PubMed ID: 26253670 [TBL] [Abstract][Full Text] [Related]
29. Heterologous expression of a β-D-glucosidase in Caldicellulosiruptor bescii has a surprisingly modest effect on the activity of the exoproteome and growth on crystalline cellulose. Kim SK; Chung D; Himmel ME; Bomble YJ; Westpheling J J Ind Microbiol Biotechnol; 2017 Dec; 44(12):1643-1651. PubMed ID: 28942503 [TBL] [Abstract][Full Text] [Related]
30. Degradation of high loads of crystalline cellulose and of unpretreated plant biomass by the thermophilic bacterium Caldicellulosiruptor bescii. Basen M; Rhaesa AM; Kataeva I; Prybol CJ; Scott IM; Poole FL; Adams MW Bioresour Technol; 2014; 152():384-92. PubMed ID: 24316482 [TBL] [Abstract][Full Text] [Related]
31. Multidomain, Surface Layer-associated Glycoside Hydrolases Contribute to Plant Polysaccharide Degradation by Caldicellulosiruptor Species. Conway JM; Pierce WS; Le JH; Harper GW; Wright JH; Tucker AL; Zurawski JV; Lee LL; Blumer-Schuette SE; Kelly RM J Biol Chem; 2016 Mar; 291(13):6732-47. PubMed ID: 26814128 [TBL] [Abstract][Full Text] [Related]
32. Homologous expression of the Caldicellulosiruptor bescii CelA reveals that the extracellular protein is glycosylated. Chung D; Young J; Bomble YJ; Vander Wall TA; Groom J; Himmel ME; Westpheling J PLoS One; 2015; 10(3):e0119508. PubMed ID: 25799047 [TBL] [Abstract][Full Text] [Related]
33. Hydrogen Production from Barley Straw and Miscanthus by the Hyperthermophilic Bacterium, Cha M; Kim JH; Choi HJ; Nho SB; Kim SY; Cha YL; Song H; Lee WH; Kim SK; Kim SJ J Microbiol Biotechnol; 2023 Oct; 33(10):1384-1389. PubMed ID: 37463861 [TBL] [Abstract][Full Text] [Related]
34. Phylogenetic, microbiological, and glycoside hydrolase diversities within the extremely thermophilic, plant biomass-degrading genus Caldicellulosiruptor. Blumer-Schuette SE; Lewis DL; Kelly RM Appl Environ Microbiol; 2010 Dec; 76(24):8084-92. PubMed ID: 20971878 [TBL] [Abstract][Full Text] [Related]
35. Expression of a Cellobiose Phosphorylase from Thermotoga maritima in Caldicellulosiruptor bescii Improves the Phosphorolytic Pathway and Results in a Dramatic Increase in Cellulolytic Activity. Kim SK; Himmel ME; Bomble YJ; Westpheling J Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29101202 [TBL] [Abstract][Full Text] [Related]
36. Extracellular secretion of noncatalytic plant cell wall-binding proteins by the cellulolytic thermophile Caldicellulosiruptor bescii. Yokoyama H; Yamashita T; Morioka R; Ohmori H J Bacteriol; 2014 Nov; 196(21):3784-92. PubMed ID: 25157080 [TBL] [Abstract][Full Text] [Related]
37. Engineering ethanologenicity into the extremely thermophilic bacterium Anaerocellum (f. Caldicellulosiriuptor) bescii. Bing RG; Ford KC; Willard DJ; Manesh MJH; Straub CT; Laemthong T; Alexander BH; Tanwee T; O'Quinn HC; Poole FL; Vailionis J; Zhang Y; Rodionov D; Adams MWW; Kelly RM Metab Eng; 2024 Nov; 86():99-114. PubMed ID: 39305946 [TBL] [Abstract][Full Text] [Related]
38. Genome-Scale Metabolic Model of Zhang K; Zhao W; Rodionov DA; Rubinstein GM; Nguyen DN; Tanwee TNN; Crosby J; Bing RG; Kelly RM; Adams MWW; Zhang Y mSystems; 2021 Jun; 6(3):e0135120. PubMed ID: 34060912 [TBL] [Abstract][Full Text] [Related]