These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 36802343)
21. Thermodynamic and fibril formation studies of full length immunoglobulin light chain AL-09 and its germline protein using scan rate dependent thermal unfolding. Blancas-Mejía LM; Horn TJ; Marin-Argany M; Auton M; Tischer A; Ramirez-Alvarado M Biophys Chem; 2015 Dec; 207():13-20. PubMed ID: 26263488 [TBL] [Abstract][Full Text] [Related]
23. A model for amyloid fibril formation in immunoglobulin light chains based on comparison of amyloidogenic and benign proteins and specific antibody binding. Khurana R; Souillac PO; Coats AC; Minert L; Ionescu-Zanetti C; Carter SA; Solomon A; Fink AL Amyloid; 2003 Jun; 10(2):97-109. PubMed ID: 12964417 [TBL] [Abstract][Full Text] [Related]
24. Mechanistic insights into the aggregation pathway of the patient-derived immunoglobulin light chain variable domain protein FOR005. Pradhan T; Sarkar R; Meighen-Berger KM; Feige MJ; Zacharias M; Reif B Nat Commun; 2023 Jun; 14(1):3755. PubMed ID: 37353525 [TBL] [Abstract][Full Text] [Related]
25. Congo red populates partially unfolded states of an amyloidogenic protein to enhance aggregation and amyloid fibril formation. Kim YS; Randolph TW; Manning MC; Stevens FJ; Carpenter JF J Biol Chem; 2003 Mar; 278(12):10842-50. PubMed ID: 12529361 [TBL] [Abstract][Full Text] [Related]
26. Barriers to Small Molecule Drug Discovery for Systemic Amyloidosis. Morgan GJ Molecules; 2021 Jun; 26(12):. PubMed ID: 34208058 [TBL] [Abstract][Full Text] [Related]
27. Molecular mechanism of amyloidogenic mutations in hypervariable regions of antibody light chains. Rottenaicher GJ; Weber B; Rührnößl F; Kazman P; Absmeier RM; Hitzenberger M; Zacharias M; Buchner J J Biol Chem; 2021; 296():100334. PubMed ID: 33508322 [TBL] [Abstract][Full Text] [Related]
28. Counteracting effects of renal solutes on amyloid fibril formation by immunoglobulin light chains. Kim YS; Cape SP; Chi E; Raffen R; Wilkins-Stevens P; Stevens FJ; Manning MC; Randolph TW; Solomon A; Carpenter JF J Biol Chem; 2001 Jan; 276(2):1626-33. PubMed ID: 11050093 [TBL] [Abstract][Full Text] [Related]
29. Recruitment of Light Chains by Homologous and Heterologous Fibrils Shows Distinctive Kinetic and Conformational Specificity. Blancas-Mejía LM; Ramirez-Alvarado M Biochemistry; 2016 May; 55(21):2967-78. PubMed ID: 27158939 [TBL] [Abstract][Full Text] [Related]
30. Truncation of the constant domain drives amyloid formation by immunoglobulin light chains. Lavatelli F; Natalello A; Marchese L; Ami D; Corazza A; Raimondi S; Mimmi MC; Malinverni S; Mangione PP; Palmer MT; Lampis A; Concardi M; Verona G; Canetti D; Arbustini E; Bellotti V; Giorgetti S J Biol Chem; 2024 Apr; 300(4):107174. PubMed ID: 38499153 [TBL] [Abstract][Full Text] [Related]
31. Assays for Light Chain Amyloidosis Formation and Cytotoxicity. Blancas-Mejia LM; Misra P; Dick CJ; Marin-Argany M; Redhage KR; Cooper SA; Ramirez-Alvarado M Methods Mol Biol; 2019; 1873():123-153. PubMed ID: 30341607 [TBL] [Abstract][Full Text] [Related]
33. Mechanistic Insights into the Early Events in the Aggregation of Immunoglobulin Light Chains. Misra P; Blancas-Mejia LM; Ramirez-Alvarado M Biochemistry; 2019 Jul; 58(29):3155-3168. PubMed ID: 31287666 [TBL] [Abstract][Full Text] [Related]
34. Structural transformations of oligomeric intermediates in the fibrillation of the immunoglobulin light chain LEN. Souillac PO; Uversky VN; Fink AL Biochemistry; 2003 Jul; 42(26):8094-104. PubMed ID: 12834361 [TBL] [Abstract][Full Text] [Related]
35. The Role of Protein Thermodynamics and Primary Structure in Fibrillogenesis of Variable Domains from Immunoglobulin Light Chains. Rennella E; Morgan GJ; Yan N; Kelly JW; Kay LE J Am Chem Soc; 2019 Aug; 141(34):13562-13571. PubMed ID: 31364359 [TBL] [Abstract][Full Text] [Related]
36. Convergent mechanisms favor fast amyloid formation in two lambda 6a Ig light chain mutants. Valdés-García G; Millán-Pacheco C; Pastor N Biopolymers; 2017 Aug; 107(8):. PubMed ID: 28509352 [TBL] [Abstract][Full Text] [Related]
37. A Substantial Structural Conversion of the Native Monomer Leads to in-Register Parallel Amyloid Fibril Formation in Light-Chain Amyloidosis. Lecoq L; Wiegand T; Rodriguez-Alvarez FJ; Cadalbert R; Herrera GA; Del Pozo-Yauner L; Meier BH; Böckmann A Chembiochem; 2019 Apr; 20(8):1027-1031. PubMed ID: 30565364 [TBL] [Abstract][Full Text] [Related]
38. Fragments of the constant region of immunoglobulin light chains are constituents of AL-amyloid proteins. Olsen KE; Sletten K; Westermark P Biochem Biophys Res Commun; 1998 Oct; 251(2):642-7. PubMed ID: 9792827 [TBL] [Abstract][Full Text] [Related]
39. Incomplete Refolding of Antibody Light Chains to Non-Native, Protease-Sensitive Conformations Leads to Aggregation: A Mechanism of Amyloidogenesis in Patients? Morgan GJ; Usher GA; Kelly JW Biochemistry; 2017 Dec; 56(50):6597-6614. PubMed ID: 29200282 [TBL] [Abstract][Full Text] [Related]
40. The CDR1 and Other Regions of Immunoglobulin Light Chains are Hot Spots for Amyloid Aggregation. Ruiz-Zamora RA; Guillaumé S; Al-Hilaly YK; Al-Garawi Z; Rodríguez-Alvarez FJ; Zavala-Padilla G; Pérez-Carreón JI; Rodríguez-Ambriz SL; Herrera GA; Becerril-Luján B; Ochoa-Leyva A; Melendez-Zajgla J; Serpell L; Del Pozo-Yauner L Sci Rep; 2019 Feb; 9(1):3123. PubMed ID: 30816248 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]