These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36802464)

  • 1. Multi-material 3D Printing of Mechanochromic Double Network Hydrogels for On-Demand Patterning.
    Xu B; Wang H; Luo Z; Yang J; Wang Z
    ACS Appl Mater Interfaces; 2023 Mar; 15(8):11122-11130. PubMed ID: 36802464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Printing Method for Tough Multifunctional Particle-Based Double-Network Hydrogels.
    Zhao D; Liu Y; Liu B; Chen Z; Nian G; Qu S; Yang W
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13714-13723. PubMed ID: 33720679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Resolution 3D Printing of Mechanically Tough Hydrogels Prepared by Thermo-Responsive Poloxamer Ink Platform.
    Imani KBC; Jo A; Choi GM; Kim B; Chung JW; Lee HS; Yoon J
    Macromol Rapid Commun; 2022 Jan; 43(2):e2100579. PubMed ID: 34708464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects.
    Compaan AM; Song K; Chai W; Huang Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Jammed Microgel-Based Inks for 3D Printing of Complex Structures Transformable via pH/Temperature Variations.
    Moon D; Lee MG; Sun JY; Song KH; Doh J
    Macromol Rapid Commun; 2022 Oct; 43(19):e2200271. PubMed ID: 35686322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid Phenol-Rhodamine Dye Based Mechanochromic Double Network Hydrogels with Tunable Stress Sensitivity.
    Xu B; Luo Z; Xiao R; Wang Z; Yang J
    Macromol Rapid Commun; 2022 Dec; 43(23):e2200580. PubMed ID: 35929753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-Printed Hydrogel Composites for Predictive Temporal (4D) Cellular Organizations and Patterned Biogenic Mineralization.
    McCracken JM; Rauzan BM; Kjellman JCE; Kandel ME; Liu YH; Badea A; Miller LA; Rogers SA; Popescu G; Nuzzo RG
    Adv Healthc Mater; 2019 Jan; 8(1):e1800788. PubMed ID: 30565889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct-Ink-Write 3D Printing of Hydrogels into Biomimetic Soft Robots.
    Cheng Y; Chan KH; Wang XQ; Ding T; Li T; Lu X; Ho GW
    ACS Nano; 2019 Nov; 13(11):13176-13184. PubMed ID: 31625724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Coaxial Printing Tough and Elastic Hydrogels for Tissue Engineering Using a Catechol Functionalized Ink System.
    Zhou Y; Yue Z; Chen Z; Wallace G
    Adv Healthc Mater; 2020 Dec; 9(24):e2001342. PubMed ID: 33103357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Printability of Double Network Alginate-Based Hydrogel for 3D Bio-Printed Complex Structures.
    Greco I; Miskovic V; Varon C; Marraffa C; Iorio CS
    Front Bioeng Biotechnol; 2022; 10():896166. PubMed ID: 35875487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailored Polypeptide Star Copolymers for 3D Printing of Bacterial Composites Via Direct Ink Writing.
    Murphy RD; Garcia RV; Oh SJ; Wood TJ; Jo KD; Read de Alaniz J; Perkins E; Hawker CJ
    Adv Mater; 2023 Jan; 35(3):e2207542. PubMed ID: 36305041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Jammed Microgel Inks for 3D Printing Applications.
    Highley CB; Song KH; Daly AC; Burdick JA
    Adv Sci (Weinh); 2019 Jan; 6(1):1801076. PubMed ID: 30643716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fragmenting Bulk Hydrogels and Processing into Granular Hydrogels for Biomedical Applications.
    Muir VG; Prendergast ME; Burdick JA
    J Vis Exp; 2022 May; (183):. PubMed ID: 35662235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Ink Writing: A 3D Printing Technology for Diverse Materials.
    Saadi MASR; Maguire A; Pottackal NT; Thakur MSH; Ikram MM; Hart AJ; Ajayan PM; Rahman MM
    Adv Mater; 2022 Jul; 34(28):e2108855. PubMed ID: 35246886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs.
    Ravanbakhsh H; Bao G; Luo Z; Mongeau LG; Zhang YS
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4009-4026. PubMed ID: 34510905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ formation of osteochondral interfaces through "bone-ink" printing in tailored microgel suspensions.
    Jalandhra GK; Molley TG; Hung TT; Roohani I; Kilian KA
    Acta Biomater; 2023 Jan; 156():75-87. PubMed ID: 36055612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pickering emulgels reinforced with host-guest supramolecular inclusion complexes for high fidelity direct ink writing.
    Pang B; Ajdary R; Antonietti M; Rojas O; Filonenko S
    Mater Horiz; 2022 Feb; 9(2):835-840. PubMed ID: 34985072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ink Based on the Tunable Swollen Microsphere for a 3D Printing Hydrogel with Broad-Range Mechanical Properties.
    Zhang R; Guo J; Yang X; Jiang X; Zhang L; Zhou J; Cao X; Duan B
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15917-15927. PubMed ID: 36921089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printing of high-strength chitosan hydrogel scaffolds without any organic solvents.
    Zhou L; Ramezani H; Sun M; Xie M; Nie J; Lv S; Cai J; Fu J; He Y
    Biomater Sci; 2020 Sep; 8(18):5020-5028. PubMed ID: 32844842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does the Size of Microgels Influence the Toughness of Microgel-Reinforced Hydrogels?
    Kessler M; Nassisi Q; Amstad E
    Macromol Rapid Commun; 2022 Aug; 43(15):e2200196. PubMed ID: 35467048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.