These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36802521)

  • 1. Optical Control of Cell Signaling with Red/Far-Red Light-Responsive Optogenetic Tools in
    Oda S; Sato-Ebine E; Nakamura A; Kimura KD; Aoki K
    ACS Synth Biol; 2023 Mar; 12(3):700-708. PubMed ID: 36802521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of Phycocyanobilin Synthesis for Genetically Encoded Phytochrome-Based Optogenetics.
    Uda Y; Miura H; Goto Y; Yamamoto K; Mii Y; Kondo Y; Takada S; Aoki K
    ACS Chem Biol; 2020 Nov; 15(11):2896-2906. PubMed ID: 33164485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient synthesis of phycocyanobilin in mammalian cells for optogenetic control of cell signaling.
    Uda Y; Goto Y; Oda S; Kohchi T; Matsuda M; Aoki K
    Proc Natl Acad Sci U S A; 2017 Nov; 114(45):11962-11967. PubMed ID: 29078307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-guided design and functional characterization of an artificial red light-regulated guanylate/adenylate cyclase for optogenetic applications.
    Etzl S; Lindner R; Nelson MD; Winkler A
    J Biol Chem; 2018 Jun; 293(23):9078-9089. PubMed ID: 29695503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Illuminating neural circuits and behaviour in Caenorhabditis elegans with optogenetics.
    Fang-Yen C; Alkema MJ; Samuel AD
    Philos Trans R Soc Lond B Biol Sci; 2015 Sep; 370(1677):20140212. PubMed ID: 26240427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual Color Neural Activation and Behavior Control with Chrimson and CoChR in Caenorhabditis elegans.
    Schild LC; Glauser DA
    Genetics; 2015 Aug; 200(4):1029-34. PubMed ID: 26022242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A bacterial phytochrome-based optogenetic system controllable with near-infrared light.
    Kaberniuk AA; Shemetov AA; Verkhusha VV
    Nat Methods; 2016 Jul; 13(7):591-7. PubMed ID: 27159085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of Orthogonal Molecules Using Ferredoxin and Ferredoxin-NADP
    Kyriakakis P; Catanho M; Hoffner N; Thavarajah W; Hu VJ; Chao SS; Hsu A; Pham V; Naghavian L; Dozier LE; Patrick GN; Coleman TP
    ACS Synth Biol; 2018 Feb; 7(2):706-717. PubMed ID: 29301067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Upconversion Nanoparticle Enables Near Infrared-Optogenetic Manipulation of the Caenorhabditis elegans Motor Circuit.
    Ao Y; Zeng K; Yu B; Miao Y; Hung W; Yu Z; Xue Y; Tan TTY; Xu T; Zhen M; Yang X; Zhang Y; Gao S
    ACS Nano; 2019 Mar; 13(3):3373-3386. PubMed ID: 30681836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The OptoGenBox - a device for long-term optogenetics in
    Busack I; Jordan F; Sapir P; Bringmann H
    J Neurogenet; 2020; 34(3-4):466-474. PubMed ID: 32543249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optogenetic manipulation of neural activity in C. elegans: from synapse to circuits and behaviour.
    Husson SJ; Gottschalk A; Leifer AM
    Biol Cell; 2013 Jun; 105(6):235-50. PubMed ID: 23458457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optogenetic Control of Heterologous Metabolism in
    Raghavan AR; Salim K; Yadav VG
    ACS Synth Biol; 2020 Sep; 9(9):2291-2300. PubMed ID: 32786352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters.
    Tang K; Beyer HM; Zurbriggen MD; Gärtner W
    Chem Rev; 2021 Dec; 121(24):14906-14956. PubMed ID: 34669383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-Infrared Fluorescent Proteins, Biosensors, and Optogenetic Tools Engineered from Phytochromes.
    Chernov KG; Redchuk TA; Omelina ES; Verkhusha VV
    Chem Rev; 2017 May; 117(9):6423-6446. PubMed ID: 28401765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Phytochrome-Derived Photoswitch for Intracellular Transport.
    Adrian M; Nijenhuis W; Hoogstraaten RI; Willems J; Kapitein LC
    ACS Synth Biol; 2017 Jul; 6(7):1248-1256. PubMed ID: 28340532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bidirectional near-infrared regulation of motor behavior using orthogonal emissive upconversion nanoparticles.
    Guo J; Chen L; Xiong F; Zhang Y; Wang R; Zhang X; Wen Q; Gao S; Zhang Y
    Nanoscale; 2023 May; 15(17):7845-7853. PubMed ID: 37057392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Residues clustered in the light-sensing knot of phytochrome B are necessary for conformer-specific binding to signaling partner PIF3.
    Kikis EA; Oka Y; Hudson ME; Nagatani A; Quail PH
    PLoS Genet; 2009 Jan; 5(1):e1000352. PubMed ID: 19165330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new platform for long-term tracking and recording of neural activity and simultaneous optogenetic control in freely behaving Caenorhabditis elegans.
    Gengyo-Ando K; Kagawa-Nagamura Y; Ohkura M; Fei X; Chen M; Hashimoto K; Nakai J
    J Neurosci Methods; 2017 Jul; 286():56-68. PubMed ID: 28506879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels.
    Leivar P; Monte E; Al-Sady B; Carle C; Storer A; Alonso JM; Ecker JR; Quail PH
    Plant Cell; 2008 Feb; 20(2):337-52. PubMed ID: 18252845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.