BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 36802530)

  • 21. Protein Folding Stability Changes Across the Proteome Reveal Targets of Cu Toxicity in
    Wiebelhaus N; Zaengle-Barone JM; Hwang KK; Franz KJ; Fitzgerald MC
    ACS Chem Biol; 2021 Jan; 16(1):214-224. PubMed ID: 33305953
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CETSA and thermal proteome profiling strategies for target identification and drug discovery of natural products.
    Tu Y; Tan L; Tao H; Li Y; Liu H
    Phytomedicine; 2023 Jul; 116():154862. PubMed ID: 37216761
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein Folding Stability Profiling of Colorectal Cancer Chemoresistance Identifies Functionally Relevant Biomarkers.
    Quan B; Bailey MA; Mantyh J; Hsu DS; Fitzgerald MC
    J Proteome Res; 2023 Jun; 22(6):1923-1935. PubMed ID: 37126456
    [TBL] [Abstract][Full Text] [Related]  

  • 24. False-positive rate determination of protein target discovery using a covalent modification- and mass spectrometry-based proteomics platform.
    Strickland EC; Geer MA; Hong J; Fitzgerald MC
    J Am Soc Mass Spectrom; 2014 Jan; 25(1):132-40. PubMed ID: 24114261
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical Denaturation and Protein Precipitation Approach for Discovery and Quantitation of Protein-Drug Interactions.
    Meng H; Ma R; Fitzgerald MC
    Anal Chem; 2018 Aug; 90(15):9249-9255. PubMed ID: 29995387
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The thermal proteome stability profile of Trypanosoma cruzi in epimastigote and trypomastigote life stages.
    Coutinho JVP; Rosa-Fernandes L; Mule SN; de Oliveira GS; Manchola NC; Santiago VF; Colli W; Wrenger C; Alves MJM; Palmisano G
    J Proteomics; 2021 Sep; 248():104339. PubMed ID: 34352427
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemo-Selection Strategy for Limited Proteolysis Experiments on the Proteomic Scale.
    Ma R; Meng H; Wiebelhaus N; Fitzgerald MC
    Anal Chem; 2018 Dec; 90(23):14039-14047. PubMed ID: 30403842
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energetics-based methods for protein folding and stability measurements.
    Geer MA; Fitzgerald MC
    Annu Rev Anal Chem (Palo Alto Calif); 2014; 7():209-28. PubMed ID: 24896313
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Emerging Methods in Chemoproteomics with Relevance to Drug Discovery.
    Nguyen C; West GM; Geoghegan KF
    Methods Mol Biol; 2017; 1513():11-22. PubMed ID: 27807827
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermodynamic analysis of protein stability and ligand binding using a chemical modification- and mass spectrometry-based strategy.
    West GM; Tang L; Fitzgerald MC
    Anal Chem; 2008 Jun; 80(11):4175-85. PubMed ID: 18457414
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mass spectrometric approaches for profiling protein folding and stability.
    Genereux JC
    Adv Protein Chem Struct Biol; 2019; 118():111-144. PubMed ID: 31928723
    [TBL] [Abstract][Full Text] [Related]  

  • 32. StableIsotope Labeling with Amino Acids in Cell Culture (SILAC)-based strategy for proteome-wide thermodynamic analysis of protein-ligand binding interactions.
    Tran DT; Adhikari J; Fitzgerald MC
    Mol Cell Proteomics; 2014 Jul; 13(7):1800-13. PubMed ID: 24741112
    [TBL] [Abstract][Full Text] [Related]  

  • 33. C
    Hyer CD; Lin HL; Haderlie CT; Berg M; Price JC
    J Proteome Res; 2023 Feb; 22(2):605-614. PubMed ID: 36707058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential denaturation of serum proteome reveals a significant amount of hidden information in complex mixtures of proteins.
    Verdoliva V; Senatore C; Polci ML; Rossi S; Cordella M; Carlucci G; Marchetti P; Antonini-Cappellini G; Facchiano A; D'Arcangelo D; Facchiano F
    PLoS One; 2013; 8(3):e57104. PubMed ID: 23533572
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mass spectrometry analysis of the structural proteome.
    de Souza N; Picotti P
    Curr Opin Struct Biol; 2020 Feb; 60():57-65. PubMed ID: 31841731
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Top-Down Proteomics Enables Comparative Analysis of Brain Proteoforms Between Mouse Strains.
    Davis RG; Park HM; Kim K; Greer JB; Fellers RT; LeDuc RD; Romanova EV; Rubakhin SS; Zombeck JA; Wu C; Yau PM; Gao P; van Nispen AJ; Patrie SM; Thomas PM; Sweedler JV; Rhodes JS; Kelleher NL
    Anal Chem; 2018 Mar; 90(6):3802-3810. PubMed ID: 29481055
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Secretomic and proteomic analysis of potential breast cancer markers by two-dimensional differential gel electrophoresis.
    Lai TC; Chou HC; Chen YW; Lee TR; Chan HT; Shen HH; Lee WT; Lin ST; Lu YC; Wu CL; Chan HL
    J Proteome Res; 2010 Mar; 9(3):1302-22. PubMed ID: 20052998
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal proteome profiling: unbiased assessment of protein state through heat-induced stability changes.
    Mateus A; Määttä TA; Savitski MM
    Proteome Sci; 2016; 15():13. PubMed ID: 28652855
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative analysis of energy metabolic pathways in MCF-7 breast cancer cells by selected reaction monitoring assay.
    Drabovich AP; Pavlou MP; Dimitromanolakis A; Diamandis EP
    Mol Cell Proteomics; 2012 Aug; 11(8):422-34. PubMed ID: 22535206
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonparametric Analysis of Thermal Proteome Profiles Reveals Novel Drug-binding Proteins.
    Childs D; Bach K; Franken H; Anders S; Kurzawa N; Bantscheff M; Savitski MM; Huber W
    Mol Cell Proteomics; 2019 Dec; 18(12):2506-2515. PubMed ID: 31582558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.