These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36802583)

  • 1. Mechanism of Delocalization-Enhanced Exciton Transport in Disordered Organic Semiconductors.
    Balzer D; Kassal I
    J Phys Chem Lett; 2023 Mar; 14(8):2155-2162. PubMed ID: 36802583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Jumping Kinetic Monte Carlo: Fast and Accurate Simulations of Partially Delocalized Charge Transport in Organic Semiconductors.
    Willson JT; Liu W; Balzer D; Kassal I
    J Phys Chem Lett; 2023 Apr; 14(15):3757-3764. PubMed ID: 37044057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exciton transport in molecular organic semiconductors boosted by transient quantum delocalization.
    Giannini S; Peng WT; Cupellini L; Padula D; Carof A; Blumberger J
    Nat Commun; 2022 May; 13(1):2755. PubMed ID: 35589694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delocalised kinetic Monte Carlo for simulating delocalisation-enhanced charge and exciton transport in disordered materials.
    Balzer D; Smolders TJAM; Blyth D; Hood SN; Kassal I
    Chem Sci; 2020 Dec; 12(6):2276-2285. PubMed ID: 34163994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A New Frontier in Exciton Transport: Transient Delocalization.
    Sneyd AJ; Beljonne D; Rao A
    J Phys Chem Lett; 2022 Jul; 13(29):6820-6830. PubMed ID: 35857739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient energy transport in an organic semiconductor mediated by transient exciton delocalization.
    Sneyd AJ; Fukui T; Paleček D; Prodhan S; Wagner I; Zhang Y; Sung J; Collins SM; Slater TJA; Andaji-Garmaroudi Z; MacFarlane LR; Garcia-Hernandez JD; Wang L; Whittell GR; Hodgkiss JM; Chen K; Beljonne D; Manners I; Friend RH; Rao A
    Sci Adv; 2021 Aug; 7(32):. PubMed ID: 34348902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Near-Infrared Luminescence of Self-Assembled Platinum(II) Complexes: From Fundamentals to Applications.
    Wei YC; Kuo KH; Chi Y; Chou PT
    Acc Chem Res; 2023 Mar; 56(6):689-699. PubMed ID: 36882976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge Transport in Organic Semiconductors: The Perspective from Nonadiabatic Molecular Dynamics.
    Giannini S; Blumberger J
    Acc Chem Res; 2022 Mar; 55(6):819-830. PubMed ID: 35196456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Monte Carlo modeling of exciton dissociation in organic donor-acceptor solar cells.
    Heiber MC; Dhinojwala A
    J Chem Phys; 2012 Jul; 137(1):014903. PubMed ID: 22779679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exciton Transport in the Nonfullerene Acceptor O-IDTBR from Nonadiabatic Molecular Dynamics.
    Stojanovic L; Giannini S; Blumberger J
    J Chem Theory Comput; 2024 Jul; ():. PubMed ID: 38967252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultralong-Range Energy Transport in a Disordered Organic Semiconductor at Room Temperature Via Coherent Exciton-Polariton Propagation.
    Hou S; Khatoniar M; Ding K; Qu Y; Napolov A; Menon VM; Forrest SR
    Adv Mater; 2020 Jul; 32(28):e2002127. PubMed ID: 32484288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon-Enhanced Exciton Delocalization in Squaraine-Type Molecular Aggregates.
    Quenzel T; Timmer D; Gittinger M; Zablocki J; Zheng F; Schiek M; Lützen A; Frauenheim T; Tretiak S; Silies M; Zhong JH; De Sio A; Lienau C
    ACS Nano; 2022 Mar; 16(3):4693-4704. PubMed ID: 35188735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Even a little delocalization produces large kinetic enhancements of charge-separation efficiency in organic photovoltaics.
    Balzer D; Kassal I
    Sci Adv; 2022 Aug; 8(32):eabl9692. PubMed ID: 35960797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of long-range exciton diffusion in highly ordered organic semiconductors.
    Najafov H; Lee B; Zhou Q; Feldman LC; Podzorov V
    Nat Mater; 2010 Nov; 9(11):938-43. PubMed ID: 20935655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organic photovoltaics: elucidating the ultra-fast exciton dissociation mechanism in disordered materials.
    Heitzer HM; Savoie BM; Marks TJ; Ratner MA
    Angew Chem Int Ed Engl; 2014 Jul; 53(29):7456-60. PubMed ID: 24829165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of Excitons in Conjugated Molecules and Organic Semiconductor Systems.
    Dimitriev OP
    Chem Rev; 2022 May; 122(9):8487-8593. PubMed ID: 35298145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing Exciton Delocalization in Organic Semiconductors: Insight from Time-Resolved Electron Paramagnetic Resonance and Magnetophotoselection Experiments.
    Meyer DL; Matsidik R; Fazzi D; Sommer M; Biskup T
    J Phys Chem Lett; 2018 Dec; 9(24):7026-7031. PubMed ID: 30485108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-dimensional exciton diffusion in perylene bisimide aggregates.
    Marciniak H; Li XQ; Würthner F; Lochbrunner S
    J Phys Chem A; 2011 Feb; 115(5):648-54. PubMed ID: 21192672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping the exciton diffusion in semiconductor nanocrystal solids.
    Kholmicheva N; Moroz P; Bastola E; Razgoniaeva N; Bocanegra J; Shaughnessy M; Porach Z; Khon D; Zamkov M
    ACS Nano; 2015 Mar; 9(3):2926-37. PubMed ID: 25682881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anomalous Exciton Quenching in Organic Semiconductors in the Low-Yield Limit.
    Zarrabi N; Yazmaciyan A; Meredith P; Kassal I; Armin A
    J Phys Chem Lett; 2018 Oct; 9(20):6144-6148. PubMed ID: 30288982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.