These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 3680276)

  • 21. Characteristics of organic cation transporter in rat renal basolateral membrane.
    Katsura T; Takano M; Tomita Y; Yasuhara M; Inui K; Hori R
    Biochim Biophys Acta; 1993 Mar; 1146(2):197-202. PubMed ID: 8452855
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intravesicular NAD has no effect on sodium-dependent phosphate transport in isolated renal brush border membrane vesicles.
    Gmaj P; Biber J; Angielski S; Stange G; Murer H
    Pflugers Arch; 1984 Jan; 400(1):60-5. PubMed ID: 6709490
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sodium-hydrogen exchange system in brush border membranes from cortical and medullary regions of the proximal tubule.
    Moran A; Stange G; Murer H
    Biochem Biophys Res Commun; 1989 Aug; 163(1):269-75. PubMed ID: 2549989
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The defect in transcellular transport of phosphate in the nephron is located in brush-border membranes in X-linked hypophosphatemia (Hyp mouse model).
    Tenenhouse HS; Scriver CR
    Can J Biochem; 1978 Jun; 56(6):640-6. PubMed ID: 566613
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Covalent and non-covalent inhibitors of the phosphate transporter of sarcoplasmic reticulum.
    Stefanova HI; East JM; Lee AG
    Biochim Biophys Acta; 1991 May; 1064(2):321-8. PubMed ID: 1827996
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glutathione may inhibit sodium-dependent phosphate transport by renal brush-border membrane vesicles.
    Suzuki M; Kawaguchi Y; Ogawa A; Yamamoto H; Momose M; Morita T; Yokoyama K; Unemura S; Miyahara T
    Nihon Jinzo Gakkai Shi; 1989 Jun; 31(6):623-8. PubMed ID: 2795990
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Na+-independent L-arginine transport in rabbit renal brush border membrane vesicles.
    Hammerman MR
    Biochim Biophys Acta; 1982 Feb; 685(1):71-7. PubMed ID: 7059593
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Na+ gradient-dependent transport of D-glucose in renal brush border membranes.
    Aronson PS; Sacktor B
    J Biol Chem; 1975 Aug; 250(15):6032-9. PubMed ID: 1150669
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Radiation-inactivation studies on brush-border-membrane vesicles. General considerations, and application to the glucose and phosphate carriers.
    Béliveau R; Demeule M; Ibnoul-Khatib H; Bergeron M; Beauregard G; Potier M
    Biochem J; 1988 Jun; 252(3):807-13. PubMed ID: 3421923
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulatory effect of thyroid hormones on uptake of phosphate and other solutes across luminal brush border membrane of kidney cortex.
    Yusufi AN; Murayama N; Keller MJ; Dousa TP
    Endocrinology; 1985 Jun; 116(6):2438-49. PubMed ID: 2986951
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The renal sodium/phosphate symporters: evidence for different functional oligomeric states.
    Jetté M; Vachon V; Potier M; Béliveau R
    Biochemistry; 1996 Dec; 35(48):15209-14. PubMed ID: 8952468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of pH on phosphate transport in rat renal brush border membrane vesicles.
    Amstutz M; Mohrmann M; Gmaj P; Murer H
    Am J Physiol; 1985 May; 248(5 Pt 2):F705-10. PubMed ID: 3993795
    [TBL] [Abstract][Full Text] [Related]  

  • 33. pH gradient as an additional driving force in the renal re-absorption of phosphate.
    Strévey J; Giroux S; Béliveau R
    Biochem J; 1990 Nov; 271(3):687-92. PubMed ID: 2244874
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Binding of nicotinamide adenine dinucleotide by the renal brush border membrane from rat kidney cortex.
    Braun-Werness JL; Jackson BA; Werness PG; Dousa TP
    Biochim Biophys Acta; 1983 Aug; 732(3):553-61. PubMed ID: 6871215
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solubilization and reconstitution of the renal phosphate transporter.
    Schäli C; Fanestil DD
    Biochim Biophys Acta; 1985 Sep; 819(1):66-74. PubMed ID: 4041452
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Study on the mechanism of placental transport of phosphate (using human placental microvillous (brush border) membrane vesicles)].
    Iioka H; Moriyama I; Amasaki M; Itoh K; Hino K; Ichijo M
    Nihon Sanka Fujinka Gakkai Zasshi; 1985 Dec; 37(12):2675-80. PubMed ID: 4086899
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Some characteristics of sodium-independent phosphate transport across renal basolateral membranes.
    Azzarolo AM; Ritchie G; Quamme GA
    Biochim Biophys Acta; 1991 May; 1064(2):229-34. PubMed ID: 2036438
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Na+-H+ exchange activity in renal brush border membrane vesicles in response to metabolic acidosis: The role of glucocorticoids.
    Kinsella J; Cujdik T; Sacktor B
    Proc Natl Acad Sci U S A; 1984 Jan; 81(2):630-4. PubMed ID: 6320201
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reconstitution of the renal brush-border membrane sodium/phosphate co-transporter.
    Vachon V; Delisle MC; Laprade R; Béliveau R
    Biochem J; 1991 Sep; 278 ( Pt 2)(Pt 2):543-8. PubMed ID: 1832858
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of Na+/H+ and Cl-/OH- exchange in rat jejunal brush border membrane vesicles: studies with acridine orange.
    Cassano G; Murer H
    Boll Soc Ital Biol Sper; 1984 May; 60 Suppl 4():143-7. PubMed ID: 6087849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.