These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36803109)

  • 1. Disruption of COMMD1 accelerates diabetic atherosclerosis by promoting glycolysis.
    Zhang L; Li L; Li Y; Jiang H; Sun Z; Zang G; Qian Y; Shao C; Wang Z
    Diab Vasc Dis Res; 2023; 20(1):14791641231159009. PubMed ID: 36803109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amelioration of Hyperglycemia with a Sodium-Glucose Cotransporter 2 Inhibitor Prevents Macrophage-Driven Atherosclerosis through Macrophage Foam Cell Formation Suppression in Type 1 and Type 2 Diabetic Mice.
    Terasaki M; Hiromura M; Mori Y; Kohashi K; Nagashima M; Kushima H; Watanabe T; Hirano T
    PLoS One; 2015; 10(11):e0143396. PubMed ID: 26606676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macrophage foam-cell formation in streptozotocin-induced diabetic mice: stimulatory effect of glucose.
    Hayek T; Hussein K; Aviram M; Coleman R; Keidar S; Pavoltzky E; Kaplan M
    Atherosclerosis; 2005 Nov; 183(1):25-33. PubMed ID: 16216589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The COMMD Family Regulates Plasma LDL Levels and Attenuates Atherosclerosis Through Stabilizing the CCC Complex in Endosomal LDLR Trafficking.
    Fedoseienko A; Wijers M; Wolters JC; Dekker D; Smit M; Huijkman N; Kloosterhuis N; Klug H; Schepers A; Willems van Dijk K; Levels JHM; Billadeau DD; Hofker MH; van Deursen J; Westerterp M; Burstein E; Kuivenhoven JA; van de Sluis B
    Circ Res; 2018 Jun; 122(12):1648-1660. PubMed ID: 29545368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macrophage-derived myeloid differentiation protein 2 plays an essential role in ox-LDL-induced inflammation and atherosclerosis.
    Chen T; Huang W; Qian J; Luo W; Shan P; Cai Y; Lin K; Wu G; Liang G
    EBioMedicine; 2020 Mar; 53():102706. PubMed ID: 32151799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pseudolaric acid B attenuates atherosclerosis progression and inflammation by suppressing PPARγ-mediated NF-κB activation.
    Li T; Wang W; Li YX; Li X; Ji WJ; Ma YQ; Chen H; Zhao JH; Zhou X
    Int Immunopharmacol; 2018 Jun; 59():76-85. PubMed ID: 29631101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sirt6 stabilizes atherosclerosis plaques by promoting macrophage autophagy and reducing contact with endothelial cells.
    Wang T; Sun C; Hu L; Gao E; Li C; Wang H; Sun D
    Biochem Cell Biol; 2020 Apr; 98(2):120-129. PubMed ID: 31063699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ERV1/ChemR23 Signaling Protects Against Atherosclerosis by Modifying Oxidized Low-Density Lipoprotein Uptake and Phagocytosis in Macrophages.
    Laguna-Fernandez A; Checa A; Carracedo M; Artiach G; Petri MH; Baumgartner R; Forteza MJ; Jiang X; Andonova T; Walker ME; Dalli J; Arnardottir H; Gisterå A; Thul S; Wheelock CE; Paulsson-Berne G; Ketelhuth DFJ; Hansson GK; Bäck M
    Circulation; 2018 Oct; 138(16):1693-1705. PubMed ID: 29739755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macrophage iron retention aggravates atherosclerosis: Evidence for the role of autocrine formation of hepcidin in plaque macrophages.
    Xiao L; Luo G; Guo X; Jiang C; Zeng H; Zhou F; Li Y; Yu J; Yao P
    Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Feb; 1865(2):158531. PubMed ID: 31666189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting the KCa3.1 channel suppresses diabetes-associated atherosclerosis via the STAT3/CD36 axis.
    Jiang XX; Bian W; Zhu YR; Wang Z; Ye P; Gu Y; Zhang H; Zuo G; Li X; Zhu L; Liu Z; Sun C; Chen SL; Zhang DM
    Diabetes Res Clin Pract; 2022 Mar; 185():109776. PubMed ID: 35149165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calenduloside e modulates macrophage polarization via KLF2-regulated glycolysis, contributing to attenuates atherosclerosis.
    Li L; Mou J; Han Y; Wang M; Lu S; Ma Q; Wang J; Ye J; Sun G
    Int Immunopharmacol; 2023 Apr; 117():109730. PubMed ID: 36878047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of USP9X in macrophages promotes foam cell formation and atherosclerosis.
    Wang B; Tang X; Yao L; Wang Y; Chen Z; Li M; Wu N; Wu D; Dai X; Jiang H; Ai D
    J Clin Invest; 2022 May; 132(10):. PubMed ID: 35389885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of macrophage-derived foam cells by Adipsin attenuates progression of atherosclerosis.
    Duan Y; Zhang X; Zhang X; Lin J; Shu X; Man W; Jiang M; Zhang Y; Wu D; Zhao Z; Sun D
    Biochim Biophys Acta Mol Basis Dis; 2022 Dec; 1868(12):166533. PubMed ID: 36064133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macrophage sortilin promotes LDL uptake, foam cell formation, and atherosclerosis.
    Patel KM; Strong A; Tohyama J; Jin X; Morales CR; Billheimer J; Millar J; Kruth H; Rader DJ
    Circ Res; 2015 Feb; 116(5):789-96. PubMed ID: 25593281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interleukin-36γ aggravates macrophage foam cell formation and atherosclerosis progression in ApoE knockout mice.
    Zhang M; Liu J; Gao R; Hu Y; Lu L; Liu C; Ai L; Pan J; Tian L; Fan J
    Cytokine; 2021 Oct; 146():155630. PubMed ID: 34246054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose-dependent insulinotropic polypeptide prevents the progression of macrophage-driven atherosclerosis in diabetic apolipoprotein E-null mice.
    Nogi Y; Nagashima M; Terasaki M; Nohtomi K; Watanabe T; Hirano T
    PLoS One; 2012; 7(4):e35683. PubMed ID: 22536426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deacetylation of Caveolin-1 by Sirt6 induces autophagy and retards high glucose-stimulated LDL transcytosis and atherosclerosis formation.
    Zhao Y; Jia X; Yang X; Bai X; Lu Y; Zhu L; Cheng W; Shu M; Zhu Y; Du X; Wang L; Shu Y; Song Y; Jin S
    Metabolism; 2022 Jun; 131():155162. PubMed ID: 35167876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. miR-351 promotes atherosclerosis in diabetes by inhibiting the ITGB3/PIK3R1/Akt pathway and induces endothelial cell injury and lipid accumulation.
    Li H; Song D; Liu Q; Li L; Sun X; Guo J; Li D; Li P
    Mol Med; 2022 Sep; 28(1):120. PubMed ID: 36180828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced glycation end-product Nε-carboxymethyl-Lysine accelerates progression of atherosclerotic calcification in diabetes.
    Wang Z; Jiang Y; Liu N; Ren L; Zhu Y; An Y; Chen D
    Atherosclerosis; 2012 Apr; 221(2):387-96. PubMed ID: 22305260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elimination of Ox-LDL through the liver inhibits advanced atherosclerotic plaque progression.
    Wang Z; Guo X; Zhang Q; Du G; Zeng Z; Zheng C; Wei Y
    Int J Med Sci; 2021; 18(16):3652-3664. PubMed ID: 34790037
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.