BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 3680315)

  • 1. Morphological study of biodegradable PEO/PLA block copolymers.
    Younes H; Cohn D
    J Biomed Mater Res; 1987 Nov; 21(11):1301-16. PubMed ID: 3680315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradable PEO/PLA block copolymers.
    Cohn D; Younes H
    J Biomed Mater Res; 1988 Nov; 22(11):993-1009. PubMed ID: 3241012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly-DL-lactic acid: polyethylene glycol block copolymers. The influence of polyethylene glycol on the degradation of poly-DL-lactic acid.
    Shah SS; Zhu KJ; Pitt CG
    J Biomater Sci Polym Ed; 1994; 5(5):421-31. PubMed ID: 8038137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behaviors of keratinocytes and fibroblasts on films of PLA50-PEO-PLA50 triblock copolymers with various PLA segment lengths.
    Garric X; Garreau H; Vert M; Molès JP
    J Mater Sci Mater Med; 2008 Apr; 19(4):1645-51. PubMed ID: 17914633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bulk, surface, and blood-contacting properties of polyetherurethanes modified with polyethylene oxide.
    Okkema AZ; Grasel TG; Zdrahala RJ; Solomon DD; Cooper SL
    J Biomater Sci Polym Ed; 1989; 1(1):43-62. PubMed ID: 2488846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Release kinetics of hydrophobic and hydrophilic model drugs from pluronic F127/poly(lactic acid) nanoparticles.
    Xiong XY; Tam KC; Gan LH
    J Control Release; 2005 Mar; 103(1):73-82. PubMed ID: 15710501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coating of poly(p-xylylene) by PLA-PEO-PLA triblock copolymers with excellent polymer-polymer adhesion for stent applications.
    Hanefeld P; Westedt U; Wombacher R; Kissel T; Schaper A; Wendorff JH; Greiner A
    Biomacromolecules; 2006 Jul; 7(7):2086-90. PubMed ID: 16827574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonfouling biomaterials based on polyethylene oxide-containing amphiphilic triblock copolymers as surface modifying additives: solid state structure of PEO-copolymer/polyurethane blends.
    Tan J; Brash JL
    J Biomed Mater Res A; 2008 Jun; 85(4):862-72. PubMed ID: 17896775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of polylactide surfaces with lactide-ethylene oxide functional block copolymers: accessibility of functional groups.
    Tresohlavá E; Popelka S; Machová L; Rypácek F
    Biomacromolecules; 2010 Jan; 11(1):68-75. PubMed ID: 19954220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable amphiphilic multiblock copolymers and their implications for biomedical applications.
    Bae YH; Huh KM; Kim Y; Park K
    J Control Release; 2000 Feb; 64(1-3):3-13. PubMed ID: 10640641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tacticity-induced changes in the micellization and degradation properties of poly(lactic acid)-block-poly(ethylene glycol) copolymers.
    Agatemor C; Shaver MP
    Biomacromolecules; 2013 Mar; 14(3):699-708. PubMed ID: 23402292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradable PELA block copolymers: in vitro degradation and tissue reaction.
    Younes H; Nataf PR; Cohn D; Appelbaum YJ; Pizov G; Uretzky G
    Biomater Artif Cells Artif Organs; 1988; 16(4):705-19. PubMed ID: 3064826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and interfacial properties of a novel biodegradable polymer surfactant: poly(ethylene oxide monooleate-block-DL-lactide).
    Nishino S; Kitamura Y; Kishida A; Yoshizawa H
    Macromol Biosci; 2005 Nov; 5(11):1066-73. PubMed ID: 16245272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacokinetics and distribution of 125I-PLA-b-PEO block copolymers in rats.
    Novakova K; Laznicek M; Rypacek F; Machova L
    Pharm Dev Technol; 2003; 8(2):153-61. PubMed ID: 12760566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [In vitro study of the properties of bioresorbable lactic acid polymer materials].
    Merloz P; Minfelde R; Schelp C; Lavaste F; Huet-Olivier J; Faure C; Butel J
    Rev Chir Orthop Reparatrice Appar Mot; 1995; 81(5):433-44. PubMed ID: 8560013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA)8 and PEG-(PDLA)8 star block copolymers.
    Hiemstra C; Zhong Z; Li L; Dijkstra PJ; Feijen J
    Biomacromolecules; 2006 Oct; 7(10):2790-5. PubMed ID: 17025354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of poly(lactic acid) and poly(lactic acid-co-ethylene oxide) nanoparticles with the plasma factors of the coagulation system.
    Sahli H; Tapon-Bretaudière J; Fischer AM; Sternberg C; Spenlehauer G; Verrecchia T; Labarre D
    Biomaterials; 1997 Feb; 18(4):281-8. PubMed ID: 9068888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of acrylate-based block copolymers prepared by atom transfer radical polymerization as matrices for paclitaxel delivery from coronary stents.
    Richard RE; Schwarz M; Ranade S; Chan AK; Matyjaszewski K; Sumerlin B
    Biomacromolecules; 2005; 6(6):3410-8. PubMed ID: 16283773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel drug release profiles from micellar solutions of PLA-PEO-PLA triblock copolymers.
    Agrawal SK; Sanabria-DeLong N; Coburn JM; Tew GN; Bhatia SR
    J Control Release; 2006 May; 112(1):64-71. PubMed ID: 16507325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of nonionic PEO-PPO diblock copolymers with lipid bilayers.
    Firestone MA; Seifert S
    Biomacromolecules; 2005; 6(5):2678-87. PubMed ID: 16153106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.