These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 36803416)

  • 1. siVAE: interpretable deep generative models for single-cell transcriptomes.
    Choi Y; Li R; Quon G
    Genome Biol; 2023 Feb; 24(1):29. PubMed ID: 36803416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parameter tuning is a key part of dimensionality reduction via deep variational autoencoders for single cell RNA transcriptomics.
    Hu Q; Greene CS
    Pac Symp Biocomput; 2019; 24():362-373. PubMed ID: 30963075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive single-cell RNA-seq analysis using deep interpretable generative modeling guided by biological hierarchy knowledge.
    Chen H; Lu Y; Dai Z; Yang Y; Li Q; Rao Y
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38960404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics.
    Seninge L; Anastopoulos I; Ding H; Stuart J
    Nat Commun; 2021 Sep; 12(1):5684. PubMed ID: 34584103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semisupervised Generative Autoencoder for Single-Cell Data.
    Trong TN; Mehtonen J; González G; Kramer R; Hautamäki V; Heinäniemi M
    J Comput Biol; 2020 Aug; 27(8):1190-1203. PubMed ID: 31794242
    [No Abstract]   [Full Text] [Related]  

  • 6. Interpretable generative deep learning: an illustration with single cell gene expression data.
    Treppner M; Binder H; Hess M
    Hum Genet; 2022 Sep; 141(9):1481-1498. PubMed ID: 34988661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Overview of Variational Autoencoders for Source Separation, Finance, and Bio-Signal Applications.
    Singh A; Ogunfunmi T
    Entropy (Basel); 2021 Dec; 24(1):. PubMed ID: 35052081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracting a biologically relevant latent space from cancer transcriptomes with variational autoencoders.
    Way GP; Greene CS
    Pac Symp Biocomput; 2018; 23():80-91. PubMed ID: 29218871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Deep Generative Decoder: MAP estimation of representations improves modelling of single-cell RNA data.
    Schuster V; Krogh A
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37572301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attri-VAE: Attribute-based interpretable representations of medical images with variational autoencoders.
    Cetin I; Stephens M; Camara O; González Ballester MA
    Comput Med Imaging Graph; 2023 Mar; 104():102158. PubMed ID: 36638626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ProtWave-VAE: Integrating Autoregressive Sampling with Latent-Based Inference for Data-Driven Protein Design.
    Praljak N; Lian X; Ranganathan R; Ferguson AL
    ACS Synth Biol; 2023 Dec; 12(12):3544-3561. PubMed ID: 37988083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generating functional protein variants with variational autoencoders.
    Hawkins-Hooker A; Depardieu F; Baur S; Couairon G; Chen A; Bikard D
    PLoS Comput Biol; 2021 Feb; 17(2):e1008736. PubMed ID: 33635868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A variational autoencoder trained with priors from canonical pathways increases the interpretability of transcriptome data.
    Liu B; Rosenhahn B; Illig T; DeLuca DS
    PLoS Comput Biol; 2024 Jul; 20(7):e1011198. PubMed ID: 38959284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualizing population structure with variational autoencoders.
    Battey CJ; Coffing GC; Kern AD
    G3 (Bethesda); 2021 Jan; 11(1):. PubMed ID: 33561250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting chemotherapy response using a variational autoencoder approach.
    Wei Q; Ramsey SA
    BMC Bioinformatics; 2021 Sep; 22(1):453. PubMed ID: 34551729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reliable interpretability of biology-inspired deep neural networks.
    Esser-Skala W; Fortelny N
    NPJ Syst Biol Appl; 2023 Oct; 9(1):50. PubMed ID: 37816807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated multi-omics analysis of ovarian cancer using variational autoencoders.
    Hira MT; Razzaque MA; Angione C; Scrivens J; Sawan S; Sarker M
    Sci Rep; 2021 Mar; 11(1):6265. PubMed ID: 33737557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data augmentation for enhancing EEG-based emotion recognition with deep generative models.
    Luo Y; Zhu LZ; Wan ZY; Lu BL
    J Neural Eng; 2020 Oct; 17(5):056021. PubMed ID: 33052888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.
    Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S
    BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A systematic comparison of generative models for medical images.
    Uzunova H; Wilms M; Forkert ND; Handels H; Ehrhardt J
    Int J Comput Assist Radiol Surg; 2022 Jul; 17(7):1213-1224. PubMed ID: 35128605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.