BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 36804214)

  • 21. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data.
    Wang H; Ma X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164
    [TBL] [Abstract][Full Text] [Related]  

  • 22. scNAME: neighborhood contrastive clustering with ancillary mask estimation for scRNA-seq data.
    Wan H; Chen L; Deng M
    Bioinformatics; 2022 Mar; 38(6):1575-1583. PubMed ID: 34999761
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A component overlapping attribute clustering (COAC) algorithm for single-cell RNA sequencing data analysis and potential pathobiological implications.
    Peng H; Zeng X; Zhou Y; Zhang D; Nussinov R; Cheng F
    PLoS Comput Biol; 2019 Feb; 15(2):e1006772. PubMed ID: 30779739
    [TBL] [Abstract][Full Text] [Related]  

  • 24. JLONMFSC: Clustering scRNA-seq data based on joint learning of non-negative matrix factorization and subspace clustering.
    Lan W; Liu M; Chen J; Ye J; Zheng R; Zhu X; Peng W
    Methods; 2024 Feb; 222():1-9. PubMed ID: 38128706
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improvements Achieved by Multiple Imputation for Single-Cell RNA-Seq Data in Clustering Analysis and Differential Expression Analysis.
    Zhu M; Lai Y
    J Comput Biol; 2022 Jul; 29(7):634-649. PubMed ID: 35575729
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deconvolution of autoencoders to learn biological regulatory modules from single cell mRNA sequencing data.
    Kinalis S; Nielsen FC; Winther O; Bagger FO
    BMC Bioinformatics; 2019 Jul; 20(1):379. PubMed ID: 31286861
    [TBL] [Abstract][Full Text] [Related]  

  • 27. scMGCN: A Multi-View Graph Convolutional Network for Cell Type Identification in scRNA-seq Data.
    Sun H; Qu H; Duan K; Du W
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38396909
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combining Global-Constrained Concept Factorization and a Regularized Gaussian Graphical Model for Clustering Single-Cell RNA-seq Data.
    Xu Y; Zhang W; Zheng X; Cai X
    Interdiscip Sci; 2024 Mar; 16(1):1-15. PubMed ID: 37815679
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-supervised deep clustering of single-cell RNA-seq data to hierarchically detect rare cell populations.
    Lei T; Chen R; Zhang S; Chen Y
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37769630
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CL-Impute: A contrastive learning-based imputation for dropout single-cell RNA-seq data.
    Shi Y; Wan J; Zhang X; Yin Y
    Comput Biol Med; 2023 Sep; 164():107263. PubMed ID: 37531858
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A graph neural network model to estimate cell-wise metabolic flux using single-cell RNA-seq data.
    Alghamdi N; Chang W; Dang P; Lu X; Wan C; Gampala S; Huang Z; Wang J; Ma Q; Zang Y; Fishel M; Cao S; Zhang C
    Genome Res; 2021 Oct; 31(10):1867-1884. PubMed ID: 34301623
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DCRELM: dual correlation reduction network-based extreme learning machine for single-cell RNA-seq data clustering.
    Gao Q; Ai Q
    Sci Rep; 2024 Jun; 14(1):13541. PubMed ID: 38866896
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection of high variability in gene expression from single-cell RNA-seq profiling.
    Chen HI; Jin Y; Huang Y; Chen Y
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):508. PubMed ID: 27556924
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Latent cellular analysis robustly reveals subtle diversity in large-scale single-cell RNA-seq data.
    Cheng C; Easton J; Rosencrance C; Li Y; Ju B; Williams J; Mulder HL; Pang Y; Chen W; Chen X
    Nucleic Acids Res; 2019 Dec; 47(22):e143. PubMed ID: 31566233
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Correlation Imputation for Single-Cell RNA-seq.
    Gan L; Vinci G; Allen GI
    J Comput Biol; 2022 May; 29(5):465-482. PubMed ID: 35325552
    [No Abstract]   [Full Text] [Related]  

  • 38. An End-to-End Deep Hybrid Autoencoder Based Method for Single-Cell RNA-Seq Data Analysis.
    Ji C; Yu N; Wang Y; Qi R; Zheng C
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3889-3900. PubMed ID: 37889828
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-throughput single-cell RNA-seq data imputation and characterization with surrogate-assisted automated deep learning.
    Li X; Li S; Huang L; Zhang S; Wong KC
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34553763
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ARGLRR: A Sparse Low-Rank Representation Single-Cell RNA-Sequencing Data Clustering Method Combined with a New Graph Regularization.
    Wang ZC; Liu JX; Shang JL; Dai LY; Zheng CH; Wang J
    J Comput Biol; 2023 Aug; 30(8):848-860. PubMed ID: 37471220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.