BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 36804222)

  • 1. Paving the way for synthetic C1 - Metabolism in Pseudomonas putida through the reductive glycine pathway.
    Bruinsma L; Wenk S; Claassens NJ; Martins Dos Santos VAP
    Metab Eng; 2023 Mar; 76():215-224. PubMed ID: 36804222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated rational and evolutionary engineering of genome-reduced Pseudomonas putida strains promotes synthetic formate assimilation.
    Turlin J; Dronsella B; De Maria A; Lindner SN; Nikel PI
    Metab Eng; 2022 Nov; 74():191-205. PubMed ID: 36328297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Core and auxiliary functions of one-carbon metabolism in
    Turlin J; Puiggené Ò; Donati S; Wirth NT; Nikel PI
    mSystems; 2023 Jun; 8(3):e0000423. PubMed ID: 37273222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The oxygen-tolerant reductive glycine pathway assimilates methanol, formate and CO
    Mitic BM; Troyer C; Lutz L; Baumschabl M; Hann S; Mattanovich D
    Nat Commun; 2023 Nov; 14(1):7754. PubMed ID: 38012236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth of E. coli on formate and methanol via the reductive glycine pathway.
    Kim S; Lindner SN; Aslan S; Yishai O; Wenk S; Schann K; Bar-Even A
    Nat Chem Biol; 2020 May; 16(5):538-545. PubMed ID: 32042198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Vivo Assimilation of One-Carbon via a Synthetic Reductive Glycine Pathway in Escherichia coli.
    Yishai O; Bouzon M; Döring V; Bar-Even A
    ACS Synth Biol; 2018 Sep; 7(9):2023-2028. PubMed ID: 29763299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering the Reductive Glycine Pathway: A Promising Synthetic Metabolism Approach for C1-Assimilation.
    Claassens NJ; Satanowski A; Bysani VR; Dronsella B; Orsi E; Rainaldi V; Yilmaz S; Wenk S; Lindner SN
    Adv Biochem Eng Biotechnol; 2022; 180():299-350. PubMed ID: 35364693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core Catalysis of the Reductive Glycine Pathway Demonstrated in Yeast.
    Gonzalez de la Cruz J; Machens F; Messerschmidt K; Bar-Even A
    ACS Synth Biol; 2019 May; 8(5):911-917. PubMed ID: 31002757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic Methanol and Formate Assimilation Via Modular Engineering and Selection Strategies.
    Claassens NJ; He H; Bar-Even A
    Curr Issues Mol Biol; 2019; 33():237-248. PubMed ID: 31166196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering and evolution of the complete Reductive Glycine Pathway in Saccharomyces cerevisiae for formate and CO
    Bysani VR; Alam AS; Bar-Even A; Machens F
    Metab Eng; 2024 Jan; 81():167-181. PubMed ID: 38040111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering yeasts to Co-utilize methanol or formate coupled with CO
    Guo Y; Zhang R; Wang J; Qin R; Feng J; Chen K; Wang X
    Metab Eng; 2024 May; 84():1-12. PubMed ID: 38759777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered Assimilation of Exogenous and Endogenous Formate in Escherichia coli.
    Yishai O; Goldbach L; Tenenboim H; Lindner SN; Bar-Even A
    ACS Synth Biol; 2017 Sep; 6(9):1722-1731. PubMed ID: 28558223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of Pseudomonas C on C1 compounds: enzyme activites in extracts of Pseudomonas C cells grown on methanol, formaldehyde, and formate as sole carbon sources.
    Goldberg I; Mateles RI
    J Bacteriol; 1975 Apr; 122(1):47-53. PubMed ID: 235511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel outlook in engineering synthetic methylotrophs and formatotrophs: a course for advancing C1-based chemicals production.
    Tuyishime P; Sinumvayo JP
    World J Microbiol Biotechnol; 2020 Jul; 36(8):118. PubMed ID: 32681457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering strategies to enable microbial utilization of C1 feedstocks.
    Jiang W; Hernández Villamor D; Peng H; Chen J; Liu L; Haritos V; Ledesma-Amaro R
    Nat Chem Biol; 2021 Aug; 17(8):845-855. PubMed ID: 34312558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth of Pseudomonas C on C1 compounds: continuoous culture.
    Battat E; Goldberg I; Mateles RI
    Appl Microbiol; 1974 Dec; 28(6):906-11. PubMed ID: 4375436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic and biocatalytic basis of formate dependent growth of Escherichia coli strains evolved in continuous culture.
    Delmas VA; Perchat N; Monet O; Fouré M; Darii E; Roche D; Dubois I; Pateau E; Perret A; Döring V; Bouzon M
    Metab Eng; 2022 Jul; 72():200-214. PubMed ID: 35341982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formate-stimulated oxidation of methanol by Pseudomonas putida 9816.
    Riis V; Miethe D; Babel W
    Biosci Biotechnol Biochem; 2003 Apr; 67(4):684-90. PubMed ID: 12784605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renewable methanol and formate as microbial feedstocks.
    Cotton CA; Claassens NJ; Benito-Vaquerizo S; Bar-Even A
    Curr Opin Biotechnol; 2020 Apr; 62():168-180. PubMed ID: 31733545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Replacing the Calvin cycle with the reductive glycine pathway in Cupriavidus necator.
    Claassens NJ; Bordanaba-Florit G; Cotton CAR; De Maria A; Finger-Bou M; Friedeheim L; Giner-Laguarda N; Munar-Palmer M; Newell W; Scarinci G; Verbunt J; de Vries ST; Yilmaz S; Bar-Even A
    Metab Eng; 2020 Nov; 62():30-41. PubMed ID: 32805426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.