BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36804240)

  • 1. The role of organic and inorganic substituents of roxarsone determines its binding behavior and mechanisms onto nano-ferrihydrite colloidal particles.
    Lei M; Huang Y; Zhou Y; Mensah CO; Wei D; Li B
    J Environ Sci (China); 2023 Jul; 129():30-44. PubMed ID: 36804240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic insights into the enhanced removal of roxsarsone and its metabolites by a sludge-based, biochar supported zerovalent iron nanocomposite: Adsorption and redox transformation.
    Li B; Wei D; Li Z; Zhou Y; Li Y; Huang C; Long J; Huang H; Tie B; Lei M
    J Hazard Mater; 2020 May; 389():122091. PubMed ID: 31972529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorption of roxarsone onto soils with different physicochemical properties.
    Fu QL; He JZ; Blaney L; Zhou DM
    Chemosphere; 2016 Sep; 159():103-112. PubMed ID: 27281543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roxarsone binding to soil-derived dissolved organic matter: Insights from multi-spectroscopic techniques.
    Fu QL; He JZ; Blaney L; Zhou DM
    Chemosphere; 2016 Jul; 155():225-233. PubMed ID: 27115847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption and desorption of phenylarsonic acid compounds on metal oxide and hydroxide, and clay minerals.
    Xie X; Cheng H
    Sci Total Environ; 2021 Feb; 757():143765. PubMed ID: 33229094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of Hg to preformed ferrihydrite-humic acid composites synthesized via co-precipitation and adsorption with different morphologies.
    Liu Y; Cheng Z; Zhi L; Zhou S
    Ecotoxicol Environ Saf; 2020 Nov; 204():111097. PubMed ID: 32784016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of interactions of ferrihydrite-humic acid-Pb (II) system.
    Zhao Z; Yao L; Li J; Ma X; Han L; Lin Z; Guan S
    Environ Sci Pollut Res Int; 2022 Mar; 29(15):21561-21575. PubMed ID: 34762244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface adsorption of organoarsenic roxarsone and arsanilic acid on iron and aluminum oxides.
    Chen WR; Huang CH
    J Hazard Mater; 2012 Aug; 227-228():378-85. PubMed ID: 22695387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roxarsone desorption from the surface of goethite by competitive anions, phosphate and hydroxide ions: Significance of the presence of metal ions.
    Wang LY; Wang SW; Chen WR
    Chemosphere; 2016 Jun; 152():423-30. PubMed ID: 26999752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption behavior and mechanism of different arsenic species on mesoporous MnFe
    Hu Q; Liu Y; Gu X; Zhao Y
    Chemosphere; 2017 Aug; 181():328-336. PubMed ID: 28453965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corncob-derived activated carbon for roxarsone removal from aqueous solution: isotherms, kinetics, and mechanism.
    Yu X; Han X; Chang C; Hu Y; Xu CC; Fang S
    Environ Sci Pollut Res Int; 2020 May; 27(13):15785-15797. PubMed ID: 32088818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gibberellic acid surface complexation on ferrihydrite at different pH values: Outer-sphere complexes versus inner-sphere complexes.
    Zhang L; Chen L; Huang G; Liu F
    Sci Total Environ; 2019 Feb; 650(Pt 1):741-748. PubMed ID: 30308849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of a redox-active diketone on the photochemical transformation of roxarsone: Mechanisms and environmental implications.
    Wei S; Zhou C; Zhang G; Zheng H; Chen Z; Zhang S
    Chemosphere; 2022 Dec; 308(Pt 2):136326. PubMed ID: 36084835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Underestimation of phosphorus fraction change in the supernatant after phosphorus adsorption onto iron oxides and iron oxide-natural organic matter complexes.
    Yan J; Jiang T; Yao Y; Wang J; Cai Y; Green NW; Wei S
    J Environ Sci (China); 2017 May; 55():197-205. PubMed ID: 28477813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitory effect of polyethylene microplastics on roxarsone degradation in soils.
    Ma JW; Wu YQ; Xu CL; Luo ZX; Yu RL; Hu GR; Yan Y
    J Hazard Mater; 2023 Jul; 454():131483. PubMed ID: 37116328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the influence of Fe(III) on the interaction between roxarsone and humic acid using multi-spectroscopic techniques.
    Yin L; Zhu J; Kong D; Xu Y; Ge S; Ni L; Li S
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Mar; 289():122213. PubMed ID: 36527969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pH dependence and role of fluorinated substituent of enoxacin binding to ferrihydrite.
    Wang L; Zhang L; Feng B; Hua X; Li Y; Zhang W; Guo Z
    Sci Total Environ; 2022 Jun; 823():153707. PubMed ID: 35149063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic insights into the environmental fate of tetracycline affected by ferrihydrite: Adsorption versus degradation.
    He J; Yang C; Deng Y; Ouyang Z; Huang Z; Yang J; Zhou J; He C; Dang Z
    Sci Total Environ; 2022 Mar; 811():152283. PubMed ID: 34902411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly effective oxidation of roxarsone by ferrate and simultaneous arsenic removal with in situ formed ferric nanoparticles.
    Yang T; Liu Y; Wang L; Jiang J; Huang Z; Pang SY; Cheng H; Gao D; Ma J
    Water Res; 2018 Dec; 147():321-330. PubMed ID: 30317041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sb(V) adsorption and desorption onto ferrihydrite: influence of pH and competing organic and inorganic anions.
    Garau G; Lauro GP; Diquattro S; Garau M; Castaldi P
    Environ Sci Pollut Res Int; 2019 Sep; 26(26):27268-27280. PubMed ID: 31321722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.