These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36804240)

  • 21. Interpreting competitive adsorption of arsenate and phosphate on nanosized iron (hydr)oxides: effects of pH and surface loading.
    Han J; Ro HM
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):28572-28582. PubMed ID: 30091077
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simultaneous oxidation of roxarsone and adsorption of released arsenic by FeS-activated sulfite.
    Gong S; Yang J; Pan Q; Liu X; Zhang Q; Wang D
    Water Res; 2023 Jun; 237():119979. PubMed ID: 37098286
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arsenite and arsenate binding to ferrihydrite organo-mineral coprecipitate: Implications for arsenic mobility and fate in natural environments.
    Xue Q; Ran Y; Tan Y; Peacock CL; Du H
    Chemosphere; 2019 Jun; 224():103-110. PubMed ID: 30818188
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The adsorption of arsenate and p-arsanilic acid onto ferrihydrite and subsequent desorption by sulfate and artificial seawater: Future implications of sea level rise.
    Barreto MSC; Elzinga EJ; Sparks DL
    Environ Pollut; 2023 Apr; 323():121302. PubMed ID: 36804144
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Roxarsone transformation and its impacts on soil enzyme activity in paddy soils: A new insight into water flooding effects.
    Zhao YP; Cui JL; Fang LP; An YL; Gan SC; Guo PR; Chen JH
    Environ Res; 2021 Nov; 202():111636. PubMed ID: 34245733
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced cadmium removal by biochar and iron oxides composite: Material interactions and pore structure.
    Liu Y; Wang L; Liu C; Ma J; Ouyang X; Weng L; Chen Y; Li Y
    J Environ Manage; 2023 Mar; 330():117136. PubMed ID: 36584474
    [TBL] [Abstract][Full Text] [Related]  

  • 27. UV irradiation and UV-H₂O₂ advanced oxidation of the roxarsone and nitarsone organoarsenicals.
    Adak A; Mangalgiri KP; Lee J; Blaney L
    Water Res; 2015 Mar; 70():74-85. PubMed ID: 25514660
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A simple treatment method for phenylarsenic compounds: Oxidation by ferrate (VI) and simultaneous removal of the arsenate released with in situ formed Fe(III) oxide-hydroxide.
    Xie X; Cheng H
    Environ Int; 2019 Jun; 127():730-741. PubMed ID: 31003056
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Binding of Cd by ferrihydrite organo-mineral composites: Implications for Cd mobility and fate in natural and contaminated environments.
    Du H; Peacock CL; Chen W; Huang Q
    Chemosphere; 2018 Sep; 207():404-412. PubMed ID: 29803890
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced immobilization of phosphate by ferrihydrite during the photoreductive dissolution process.
    Lv Y; Liu J; Chen C; Lin X; Wu X; Chen Q; He H; Zhu R
    Sci Total Environ; 2022 Sep; 838(Pt 1):155835. PubMed ID: 35550904
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transformation of roxarsone during UV disinfection in the presence of ferric ions.
    Chen Y; Lin C; Zhou Y; Long L; Li L; Tang M; Liu Z; Pozdnyakov IP; Huang LZ
    Chemosphere; 2019 Oct; 233():431-439. PubMed ID: 31176907
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photodegradation of roxarsone in the aquatic environment: influencing factors, mechanisms, and artificial neural network modeling.
    Meng J; Arong ; Yuan S; Wang W; Jin J; Zhan X; Xiao L; Hu ZH
    Environ Sci Pollut Res Int; 2022 Jan; 29(5):7844-7852. PubMed ID: 34480704
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study on the remediation of tetracycline antibiotics and roxarsone contaminated soil.
    Zhan L; Xia Z; Xu Z; Xie B
    Environ Pollut; 2021 Feb; 271():116312. PubMed ID: 33360583
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adsorption thermodynamics of p-arsanilic acid on iron (oxyhydr)oxides: in-situ ATR-FTIR studies.
    Depalma S; Cowen S; Hoang T; Al-Abadleh HA
    Environ Sci Technol; 2008 Mar; 42(6):1922-7. PubMed ID: 18409614
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thiocyanate adsorption on ferrihydrite and its fate during ferrihydrite transformation to hematite and goethite.
    Vu HP; Moreau JW
    Chemosphere; 2015 Jan; 119():987-993. PubMed ID: 25303658
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sorption kinetics, isotherms and mechanisms of PFOS on soils with different physicochemical properties.
    Wei C; Song X; Wang Q; Hu Z
    Ecotoxicol Environ Saf; 2017 Aug; 142():40-50. PubMed ID: 28384502
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Environmental implications of interaction between humic substances and iron oxide nanoparticles: A review.
    Di Iorio E; Circelli L; Angelico R; Torrent J; Tan W; Colombo C
    Chemosphere; 2022 Sep; 303(Pt 2):135172. PubMed ID: 35649442
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sorption of two aromatic acids onto iron oxides: experimental study and modeling.
    Hanna K
    J Colloid Interface Sci; 2007 May; 309(2):419-28. PubMed ID: 17303153
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adsorption of roxarsone from aqueous solution by multi-walled carbon nanotubes.
    Hu J; Tong Z; Hu Z; Chen G; Chen T
    J Colloid Interface Sci; 2012 Jul; 377(1):355-61. PubMed ID: 22513167
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sorption of arsenite, arsenate, and thioarsenates to iron oxides and iron sulfides: a kinetic and spectroscopic investigation.
    Couture RM; Rose J; Kumar N; Mitchell K; Wallschläger D; Van Cappellen P
    Environ Sci Technol; 2013 Jun; 47(11):5652-9. PubMed ID: 23607702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.