These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 36804389)
41. Identification of a putative receptor-ligand pair controlling cell separation in plants. Stenvik GE; Butenko MA; Aalen RB Plant Signal Behav; 2008 Dec; 3(12):1109-10. PubMed ID: 19704449 [TBL] [Abstract][Full Text] [Related]
42. Four shades of detachment: regulation of floral organ abscission. Kim J Plant Signal Behav; 2014; 9(11):e976154. PubMed ID: 25482787 [TBL] [Abstract][Full Text] [Related]
43. Floral organ abscission in Arabidopsis requires the combined activities of three TALE homeodomain transcription factors. Crick J; Corrigan L; Belcram K; Khan M; Dawson JW; Adroher B; Li S; Hepworth SR; Pautot V J Exp Bot; 2022 Oct; 73(18):6150-6169. PubMed ID: 35689803 [TBL] [Abstract][Full Text] [Related]
44. The SERK1 receptor-like kinase regulates organ separation in Arabidopsis flowers. Lewis MW; Leslie ME; Fulcher EH; Darnielle L; Healy PN; Youn JY; Liljegren SJ Plant J; 2010 Jun; 62(5):817-28. PubMed ID: 20230490 [TBL] [Abstract][Full Text] [Related]
45. Inflorescence abscission protein SlIDL6 promotes low light intensity-induced tomato flower abscission. Li R; Shi CL; Wang X; Meng Y; Cheng L; Jiang CZ; Qi M; Xu T; Li T Plant Physiol; 2021 Jun; 186(2):1288-1301. PubMed ID: 33711162 [TBL] [Abstract][Full Text] [Related]
46. The Transcription Factor AtDOF4.7 Is Involved in Ethylene- and IDA-Mediated Organ Abscission in Arabidopsis. Wang GQ; Wei PC; Tan F; Yu M; Zhang XY; Chen QJ; Wang XC Front Plant Sci; 2016; 7():863. PubMed ID: 27379143 [TBL] [Abstract][Full Text] [Related]
47. The IDA Peptide Controls Abscission in Arabidopsis and Citrus. Estornell LH; Wildhagen M; Pérez-Amador MA; Talón M; Tadeo FR; Butenko MA Front Plant Sci; 2015; 6():1003. PubMed ID: 26635830 [TBL] [Abstract][Full Text] [Related]
48. FOREVER YOUNG FLOWER Negatively Regulates Ethylene Response DNA-Binding Factors by Activating an Ethylene-Responsive Factor to Control Arabidopsis Floral Organ Senescence and Abscission. Chen WH; Li PF; Chen MK; Lee YI; Yang CH Plant Physiol; 2015 Aug; 168(4):1666-83. PubMed ID: 26063506 [TBL] [Abstract][Full Text] [Related]
49. Disrupting ER-associated protein degradation suppresses the abscission defect of a weak hae hsl2 mutant in Arabidopsis. Baer J; Taylor I; Walker JC J Exp Bot; 2016 Oct; 67(18):5473-5484. PubMed ID: 27566817 [TBL] [Abstract][Full Text] [Related]
50. Transcriptomic evidence for distinct mechanisms underlying abscission deficiency in the Arabidopsis mutants haesa/haesa-like 2 and nevershed. Taylor I; Walker JC BMC Res Notes; 2018 Oct; 11(1):754. PubMed ID: 30352616 [TBL] [Abstract][Full Text] [Related]
52. The manipulation of auxin in the abscission zone cells of Arabidopsis flowers reveals that indoleacetic acid signaling is a prerequisite for organ shedding. Basu MM; González-Carranza ZH; Azam-Ali S; Tang S; Shahid AA; Roberts JA Plant Physiol; 2013 May; 162(1):96-106. PubMed ID: 23509178 [TBL] [Abstract][Full Text] [Related]
53. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Ellis CM; Nagpal P; Young JC; Hagen G; Guilfoyle TJ; Reed JW Development; 2005 Oct; 132(20):4563-74. PubMed ID: 16176952 [TBL] [Abstract][Full Text] [Related]
54. IDA-like gene expression in soybean and tomato leaf abscission and requirement for a diffusible stelar abscission signal. Tucker ML; Yang R AoB Plants; 2012; 2012():pls035. PubMed ID: 23585923 [TBL] [Abstract][Full Text] [Related]
55. Bioinformatics and Expression Analysis of IDA-Like Genes Reveal Their Potential Functions in Flower Abscission and Stress Response in Tobacco ( Guo C; Wang Q; Li Z; Sun J; Zhang Z; Li X; Guo Y Front Genet; 2021; 12():670794. PubMed ID: 33986773 [TBL] [Abstract][Full Text] [Related]
56. Posttranslationally modified small-peptide signals in plants. Matsubayashi Y Annu Rev Plant Biol; 2014; 65():385-413. PubMed ID: 24779997 [TBL] [Abstract][Full Text] [Related]
57. Biogenesis of post-translationally modified peptide signals for plant reproductive development. Stintzi A; Schaller A Curr Opin Plant Biol; 2022 Oct; 69():102274. PubMed ID: 35977439 [TBL] [Abstract][Full Text] [Related]
58. A MAPK cascade downstream of IDA-HAE/HSL2 ligand-receptor pair in lateral root emergence. Zhu Q; Shao Y; Ge S; Zhang M; Zhang T; Hu X; Liu Y; Walker J; Zhang S; Xu J Nat Plants; 2019 Apr; 5(4):414-423. PubMed ID: 30936437 [TBL] [Abstract][Full Text] [Related]
59. Beyond the meristems: similarities in the CLAVATA3 and INFLORESCENCE DEFICIENT IN ABSCISSION peptide mediated signalling pathways. Butenko MA; Simon R J Exp Bot; 2015 Aug; 66(17):5195-203. PubMed ID: 26105996 [TBL] [Abstract][Full Text] [Related]
60. Serine 231 and 257 of Agamous-like 15 are phosphorylated in floral receptacles. Patharkar OR; Macken TA; Walker JC Plant Signal Behav; 2016 Jul; 11(7):e1199314. PubMed ID: 27322882 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]