These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36804608)

  • 1. Pixel-by-pixel autofluorescence corrected FRET in fluorescence microscopy improves accuracy for samples with spatially varied autofluorescence to signal ratio.
    Rebenku I; Lloyd CB; Szöllősi J; Vereb G
    Sci Rep; 2023 Feb; 13(1):2934. PubMed ID: 36804608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of spectral imaging microscopy in cytomics and fluorescence resonance energy transfer (FRET) analysis.
    Ecker RC; de Martin R; Steiner GE; Schmid JA
    Cytometry A; 2004 Jun; 59(2):172-81. PubMed ID: 15170596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow Cytometric FRET Analysis of Protein Interactions.
    Ujlaky-Nagy L; Nagy P; Szöllősi J; Vereb G
    Methods Mol Biol; 2018; 1678():393-419. PubMed ID: 29071688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximum likelihood estimation of FRET efficiency and its implications for distortions in pixelwise calculation of FRET in microscopy.
    Nagy P; Szabó A; Váradi T; Kovács T; Batta G; Szöllősi J
    Cytometry A; 2014 Nov; 85(11):942-52. PubMed ID: 25123296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-color confocal Förster (or fluorescence) resonance energy transfer microscopy: Quantitative analysis of protein interactions in the nucleation of actin filaments in live cells.
    Wallrabe H; Sun Y; Fang X; Periasamy A; Bloom GS
    Cytometry A; 2015 Jun; 87(6):580-8. PubMed ID: 25755111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intensity-based energy transfer measurements in digital imaging microscopy.
    Nagy P; Vámosi G; Bodnár A; Lockett SJ; Szöllösi J
    Eur Biophys J; 1998; 27(4):377-89. PubMed ID: 9691467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-fitting FLIM-FRET facilitates analysis of protein interactions in live zebrafish embryos.
    Auer JMT; Murphy LC; Xiao D; Li DU; Wheeler AP
    J Microsc; 2023 Jul; 291(1):43-56. PubMed ID: 36448983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High throughput FRET analysis of protein-protein interactions by slide-based imaging laser scanning cytometry.
    Szalóki N; Doan-Xuan QM; Szöllősi J; Tóth K; Vámosi G; Bacsó Z
    Cytometry A; 2013 Sep; 83(9):818-29. PubMed ID: 23843167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring FRET in flow cytometry and microscopy.
    Nagy P; Vereb G; Damjanovich S; Mátyus L; Szöllõsi J
    Curr Protoc Cytom; 2006 Nov; Chapter 12():Unit12.8. PubMed ID: 18770834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching.
    Van Munster EB; Kremers GJ; Adjobo-Hermans MJ; Gadella TW
    J Microsc; 2005 Jun; 218(Pt 3):253-62. PubMed ID: 15958019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow cytometric FRET analysis of protein interaction.
    Vereb G; Nagy P; Szöllosi J
    Methods Mol Biol; 2011; 699():371-92. PubMed ID: 21116993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FRET efficiency measurement in a molecular tension probe with a low-cost frequency-domain fluorescence lifetime imaging microscope.
    Dumas JP; Jiang JY; Gates EM; Hoffman BD; Pierce MC; Boustany NN
    J Biomed Opt; 2019 Dec; 24(12):1-11. PubMed ID: 31884745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global analysis of FRET-FLIM data in live plant cells.
    Laptenok SP; Snellenburg JJ; Bücherl CA; Konrad KR; Borst JW
    Methods Mol Biol; 2014; 1076():481-502. PubMed ID: 24108640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SensorFRET: A Standardless Approach to Measuring Pixel-based Spectral Bleed-through and FRET Efficiency using Spectral Imaging.
    Arsenovic PT; Mayer CR; Conway DE
    Sci Rep; 2017 Nov; 7(1):15609. PubMed ID: 29142199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding FRET as a research tool for cellular studies.
    Shrestha D; Jenei A; Nagy P; Vereb G; Szöllősi J
    Int J Mol Sci; 2015 Mar; 16(4):6718-56. PubMed ID: 25815593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast Screening of Protein-Protein Interactions Using Förster Resonance Energy Transfer (FRET-) Based Fluorescence Plate Reader Assay in Live Cells.
    Durhan ST; Sezer EN; Son CD; Baloglu FK
    Appl Spectrosc; 2023 Mar; 77(3):292-302. PubMed ID: 36345563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing FRET using spectral techniques.
    Leavesley SJ; Britain AL; Cichon LK; Nikolaev VO; Rich TC
    Cytometry A; 2013 Oct; 83(10):898-912. PubMed ID: 23929684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative single molecule FRET efficiencies using TIRF microscopy.
    Hildebrandt LL; Preus S; Birkedal V
    Faraday Discuss; 2015; 184():131-42. PubMed ID: 26416760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarized fluorescence resonance energy transfer microscopy.
    Mattheyses AL; Hoppe AD; Axelrod D
    Biophys J; 2004 Oct; 87(4):2787-97. PubMed ID: 15454470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.