BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36804856)

  • 1. Valorization of lignin through reductive catalytic fractionation of fermented corn stover residues.
    Yin WZ; Xiao LP; Zou SL; Li WX; Wang H; Sun RC
    Bioresour Technol; 2023 Apr; 373():128752. PubMed ID: 36804856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lignin Valorization by Cobalt-Catalyzed Fractionation of Lignocellulose to Yield Monophenolic Compounds.
    Rautiainen S; Di Francesco D; Katea SN; Westin G; Tungasmita DN; Samec JSM
    ChemSusChem; 2019 Jan; 12(2):404-408. PubMed ID: 30485687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant-assisted dilute ethylenediamine fractionation of corn stover for technical lignin valorization and biobutanol production.
    Cai D; Wen J; Wu Y; Su C; Bi H; Wang Y; Jiang Y; Qin P; Tan T; Zhang C
    Bioresour Technol; 2024 Feb; 394():130231. PubMed ID: 38142909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of Terephthalic Acid from Corn Stover Lignin.
    Song S; Zhang J; Gözaydın G; Yan N
    Angew Chem Int Ed Engl; 2019 Apr; 58(15):4934-4937. PubMed ID: 30680864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic amine catalytic organosolv pretreatment of corn stover for enzymatic saccharification and high-quality lignin.
    Tang C; Shan J; Chen Y; Zhong L; Shen T; Zhu C; Ying H
    Bioresour Technol; 2017 May; 232():222-228. PubMed ID: 28231540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corn stover valorization by one-step formic acid fractionation and formylation for 5-hydroxymethylfurfural and high guaiacyl lignin production.
    Jin C; Yang M; E S; Liu J; Zhang S; Zhang X; Sheng K; Zhang X
    Bioresour Technol; 2020 Mar; 299():122586. PubMed ID: 31865154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lignin-first biorefinery of corn stalk via zirconium(IV) chloride/sodium hydroxide-catalyzed aerobic oxidation to produce phenolic carbonyls.
    Liu C; Lin F; Kong X; Fan Y; Xu W; Lei M; Xiao R
    Bioresour Technol; 2022 Jun; 354():127183. PubMed ID: 35439565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential utilization of bamboo biomass through reductive catalytic fractionation of lignin.
    Zhang K; Li H; Xiao LP; Wang B; Sun RC; Song G
    Bioresour Technol; 2019 Aug; 285():121335. PubMed ID: 31003204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst.
    Liu S; Xie Q; Zhang B; Cheng Y; Liu Y; Chen P; Ruan R
    Bioresour Technol; 2016 Mar; 204():164-170. PubMed ID: 26773959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mild alkaline presoaking and organosolv pretreatment of corn stover and their impacts on corn stover composition, structure, and digestibility.
    Qing Q; Zhou L; Guo Q; Gao X; Zhang Y; He Y; Zhang Y
    Bioresour Technol; 2017 Jun; 233():284-290. PubMed ID: 28285219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promising seawater hydrothermal combining electro-assisted pretreatment for corn stover valorization within a biorefinery concept.
    Wu Y; Li X; Li F; Ling Z; Meng Y; Chen F; Ji Z
    Bioresour Technol; 2022 May; 351():127066. PubMed ID: 35351556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pretreatment on corn stover with low concentration of formic acid.
    Xu J; Thomsen MH; Thomsen AB
    J Microbiol Biotechnol; 2009 Aug; 19(8):845-50. PubMed ID: 19734724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective production of 4-ethylphenolics from lignin via mild hydrogenolysis.
    Ye Y; Zhang Y; Fan J; Chang J
    Bioresour Technol; 2012 Aug; 118():648-51. PubMed ID: 22717604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible biorefinery for producing fermentation sugars, lignin and pulp from corn stover.
    Kadam KL; Chin CY; Brown LW
    J Ind Microbiol Biotechnol; 2008 May; 35(5):331. PubMed ID: 18273654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of structural features on enzyme digestibility of corn stover.
    Kim S; Holtzapple MT
    Bioresour Technol; 2006 Mar; 97(4):583-91. PubMed ID: 15961307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of Antioxidant and Antimicrobial Properties of Lignin from Corn Stover Residue Pretreated with Low-Moisture Anhydrous Ammonia and Enzymatic Hydrolysis Process.
    Guo M; Jin T; Nghiem NP; Fan X; Qi PX; Jang CH; Shao L; Wu C
    Appl Biochem Biotechnol; 2018 Jan; 184(1):350-365. PubMed ID: 28688047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural changes of corn stover lignin during acid pretreatment.
    Moxley G; Gaspar AR; Higgins D; Xu H
    J Ind Microbiol Biotechnol; 2012 Sep; 39(9):1289-99. PubMed ID: 22543524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-pot fractionation of corn stover with peracetic acid and maleic acid.
    Lyu Q; Chen X; Zhang Y; Yu H; Han L; Xiao W
    Bioresour Technol; 2021 Jan; 320(Pt A):124306. PubMed ID: 33157440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of lignin migration and relocation during steam pretreatment on the enzymatic hydrolysis of softwood and corn stover biomass substrates.
    Takada M; Chandra RP; Saddler JN
    Biotechnol Bioeng; 2019 Nov; 116(11):2864-2873. PubMed ID: 31403176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave-assisted catalytic depolymerization of lignin from birch sawdust to produce phenolic monomers utilizing a hydrogen-free strategy.
    Liu X; Bouxin FP; Fan J; Budarin VL; Hu C; Clark JH
    J Hazard Mater; 2021 Jan; 402():123490. PubMed ID: 32712365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.