These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 36804983)

  • 41. Slide type landslide susceptibility assessment of the Büyük Menderes watershed using artificial neural network method.
    Tekin S; Çan T
    Environ Sci Pollut Res Int; 2022 Jul; 29(31):47174-47188. PubMed ID: 35178630
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Automated Landslide-Risk Prediction Using Web GIS and Machine Learning Models.
    Tengtrairat N; Woo WL; Parathai P; Aryupong C; Jitsangiam P; Rinchumphu D
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283153
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The human cost of global warming: Deadly landslides and their triggers (1995-2014).
    Haque U; da Silva PF; Devoli G; Pilz J; Zhao B; Khaloua A; Wilopo W; Andersen P; Lu P; Lee J; Yamamoto T; Keellings D; Wu JH; Glass GE
    Sci Total Environ; 2019 Sep; 682():673-684. PubMed ID: 31129549
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhancing co-seismic landslide susceptibility, building exposure, and risk analysis through machine learning.
    Pyakurel A; K C D; Dahal BK
    Sci Rep; 2024 Mar; 14(1):5902. PubMed ID: 38467642
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China.
    Wang Y; Wu X; Chen Z; Ren F; Feng L; Du Q
    Int J Environ Res Public Health; 2019 Jan; 16(3):. PubMed ID: 30696105
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Landslide susceptibility assessment using the Weight of Evidence method: A case study in Xunyang area, China.
    Cao Y; Wei X; Fan W; Nan Y; Xiong W; Zhang S
    PLoS One; 2021; 16(1):e0245668. PubMed ID: 33493200
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A new combined approach of neural-metaheuristic algorithms for predicting and appraisal of landslide susceptibility mapping.
    Moayedi H; Dehrashid AA
    Environ Sci Pollut Res Int; 2023 Jul; 30(34):82964-82989. PubMed ID: 37336850
    [TBL] [Abstract][Full Text] [Related]  

  • 48. GIS-based multicriteria decision analysis for settlement areas: a case study in Canik.
    Kilicoglu C
    Environ Sci Pollut Res Int; 2022 May; 29(24):35746-35759. PubMed ID: 35060034
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spatio-temporal landslide inventory and susceptibility assessment using Sentinel-2 in the Himalayan mountainous region of Pakistan.
    Bacha AS; Shafique M; van der Werff H; van der Meijde M; Hussain ML; Wahid S
    Environ Monit Assess; 2022 Sep; 194(11):845. PubMed ID: 36175580
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analysis of deformation mechanism of rainfall-induced landslide in the Three Gorges Reservoir Area: Piansongshu landslide.
    Wang H; Zou J; Wang X; Lv P; Tan Z; Cheng L; Wei Q; Qin B; Guo Z
    Sci Rep; 2024 May; 14(1):10005. PubMed ID: 38693187
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inventory of shallow landslides triggered by extreme precipitation in July 2023 in Beijing, China.
    Ma H; Wang F
    Sci Data; 2024 Oct; 11(1):1083. PubMed ID: 39362906
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Landslide Susceptibility Evaluation Using Different Slope Units Based on BP Neural Network.
    Huang J; Zeng X; Ding L; Yin Y; Li Y
    Comput Intell Neurosci; 2022; 2022():9923775. PubMed ID: 35655489
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The influence of climate change and canopy disturbances on landslide susceptibility in headwater catchments.
    Scheidl C; Heiser M; Kamper S; Thaler T; Klebinder K; Nagl F; Lechner V; Markart G; Rammer W; Seidl R
    Sci Total Environ; 2020 Nov; 742():140588. PubMed ID: 32629267
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rainfall-Induced Landslide Prediction Using Machine Learning Models: The Case of Ngororero District, Rwanda.
    Kuradusenge M; Kumaran S; Zennaro M
    Int J Environ Res Public Health; 2020 Jun; 17(11):. PubMed ID: 32532022
    [TBL] [Abstract][Full Text] [Related]  

  • 55. GIS-based landslide susceptibility zoning using a coupled model: a case study in Badong County, China.
    Wang P; Deng H; Liu Y
    Environ Sci Pollut Res Int; 2024 Jan; 31(4):6213-6231. PubMed ID: 38146028
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Unraveling the drivers of intensified landslide regimes in Western Ghats, India.
    Yunus AP; Fan X; Subramanian SS; Jie D; Xu Q
    Sci Total Environ; 2021 May; 770():145357. PubMed ID: 33736370
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identifying the essential influencing factors of landslide susceptibility models based on hybrid-optimized machine learning with different grid resolutions: a case of Sino-Pakistani Karakorum Highway.
    Wu J; Zhang Y; Yang L; Zhang Y; Lei J; Zhi M; Ma G
    Environ Sci Pollut Res Int; 2023 Sep; 30(45):100675-100700. PubMed ID: 37639095
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Failure probability assessment of landslides triggered by earthquakes and rainfall: a case study in Yadong County, Tibet, China.
    Chen L; Mei L; Zeng B; Yin K; Shrestha DP; Du J
    Sci Rep; 2020 Oct; 10(1):16531. PubMed ID: 33020587
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Determination of landslide susceptibility with Analytic Hierarchy Process (AHP) and the role of forest ecosystem services on landslide susceptibility.
    Aksoy H
    Environ Monit Assess; 2023 Nov; 195(12):1525. PubMed ID: 37994954
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Formation and evolution of thermokarst landslides in the Qinghai-Tibet Plateau, China.
    Wei T; Wang H; Cui P; Wang Y; Zhang B; Wei RL; Liu ZX; Li CY
    Sci Total Environ; 2024 Dec; 954():176557. PubMed ID: 39357758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.