These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36805231)

  • 1. MGREL: A multi-graph representation learning-based ensemble learning method for gene-disease association prediction.
    Wang Z; Gu Y; Zheng S; Yang L; Li J
    Comput Biol Med; 2023 Mar; 155():106642. PubMed ID: 36805231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MAGCNSE: predicting lncRNA-disease associations using multi-view attention graph convolutional network and stacking ensemble model.
    Liang Y; Zhang ZQ; Liu NN; Wu YN; Gu CL; Wang YL
    BMC Bioinformatics; 2022 May; 23(1):189. PubMed ID: 35590258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HINGRL: predicting drug-disease associations with graph representation learning on heterogeneous information networks.
    Zhao BW; Hu L; You ZH; Wang L; Su XR
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34891172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A representation learning model based on variational inference and graph autoencoder for predicting lncRNA-disease associations.
    Shi Z; Zhang H; Jin C; Quan X; Yin Y
    BMC Bioinformatics; 2021 Mar; 22(1):136. PubMed ID: 33745450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MDGF-MCEC: a multi-view dual attention embedding model with cooperative ensemble learning for CircRNA-disease association prediction.
    Wu Q; Deng Z; Pan X; Shen HB; Choi KS; Wang S; Wu J; Yu DJ
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35907779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of circRNA-disease associations via multi-model fusion and ensemble learning.
    Yang J; Lei X; Zhang F
    J Cell Mol Med; 2024 Apr; 28(7):e18180. PubMed ID: 38506066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MGRL: Predicting Drug-Disease Associations Based on Multi-Graph Representation Learning.
    Zhao BW; You ZH; Wong L; Zhang P; Li HY; Wang L
    Front Genet; 2021; 12():657182. PubMed ID: 34054920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous biomedical entity representation learning for gene-disease association prediction.
    Meng Z; Liu S; Liang S; Jani B; Meng Z
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39154194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of microbe-drug associations based on a modified graph attention variational autoencoder and random forest.
    Wang B; Ma F; Du X; Zhang G; Li J
    Front Microbiol; 2024; 15():1394302. PubMed ID: 38881658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GAE-LGA: integration of multi-omics data with graph autoencoders to identify lncRNA-PCG associations.
    Gao M; Liu S; Qi Y; Guo X; Shang X
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36305456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of miRNA-disease associations via deep forest ensemble learning based on autoencoder.
    Liu W; Lin H; Huang L; Peng L; Tang T; Zhao Q; Yang L
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35325038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partner-Specific Drug Repositioning Approach Based on Graph Convolutional Network.
    Sun X; Wang B; Zhang J; Li M
    IEEE J Biomed Health Inform; 2022 Nov; 26(11):5757-5765. PubMed ID: 35921345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GraphCDA: a hybrid graph representation learning framework based on GCN and GAT for predicting disease-associated circRNAs.
    Dai Q; Liu Z; Wang Z; Duan X; Guo M
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-Modal Graph Learning for Disease Prediction.
    Zheng S; Zhu Z; Liu Z; Guo Z; Liu Y; Yang Y; Zhao Y
    IEEE Trans Med Imaging; 2022 Sep; 41(9):2207-2216. PubMed ID: 35286257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graph embedding ensemble methods based on the heterogeneous network for lncRNA-miRNA interaction prediction.
    Zhao C; Qiu Y; Zhou S; Liu S; Zhang W; Niu Y
    BMC Genomics; 2020 Dec; 21(Suppl 13):867. PubMed ID: 33334307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MSGCL: inferring miRNA-disease associations based on multi-view self-supervised graph structure contrastive learning.
    Ruan X; Jiang C; Lin P; Lin Y; Liu J; Huang S; Liu X
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36790856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning global dependencies and multi-semantics within heterogeneous graph for predicting disease-related lncRNAs.
    Xuan P; Wang S; Cui H; Zhao Y; Zhang T; Wu P
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36088549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage.
    Cui S; Luo Y; Tseng HH; Ten Haken RK; El Naqa I
    Med Phys; 2019 May; 46(5):2497-2511. PubMed ID: 30891794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm.
    Wang L; You ZH; Li YM; Zheng K; Huang YA
    PLoS Comput Biol; 2020 May; 16(5):e1007568. PubMed ID: 32433655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. piRNA-disease association prediction based on multi-channel graph variational autoencoder.
    Sun W; Guo C; Wan J; Ren H
    PeerJ Comput Sci; 2024; 10():e2216. PubMed ID: 39145234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.