These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36805650)

  • 1. Fusion-based quantum computation.
    Bartolucci S; Birchall P; Bombín H; Cable H; Dawson C; Gimeno-Segovia M; Johnston E; Kieling K; Nickerson N; Pant M; Pastawski F; Rudolph T; Sparrow C
    Nat Commun; 2023 Feb; 14(1):912. PubMed ID: 36805650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entangling logical qubits with lattice surgery.
    Erhard A; Poulsen Nautrup H; Meth M; Postler L; Stricker R; Stadler M; Negnevitsky V; Ringbauer M; Schindler P; Briegel HJ; Blatt R; Friis N; Monz T
    Nature; 2021 Jan; 589(7841):220-224. PubMed ID: 33442044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Photon-Loss Threshold Quantum Computing Using GHZ-State Measurements.
    Pankovich B; Kan A; Wan KH; Ostmann M; Neville A; Omkar S; Sohbi A; Brádler K
    Phys Rev Lett; 2024 Aug; 133(5):050604. PubMed ID: 39159087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical demonstration of quantum fault-tolerant threshold.
    Sun K; Hao ZY; Wang Y; Li JK; Xu XY; Xu JS; Han YJ; Li CF; Guo GC
    Light Sci Appl; 2022 Jul; 11(1):203. PubMed ID: 35790719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resource-Efficient Topological Fault-Tolerant Quantum Computation with Hybrid Entanglement of Light.
    Omkar S; Teo YS; Jeong H
    Phys Rev Lett; 2020 Aug; 125(6):060501. PubMed ID: 32845660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-fidelity photonic quantum logic gate based on near-optimal Rydberg single-photon source.
    Shi S; Xu B; Zhang K; Ye GS; Xiang DS; Liu Y; Wang J; Su D; Li L
    Nat Commun; 2022 Aug; 13(1):4454. PubMed ID: 35915059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deterministic teleportation of a quantum gate between two logical qubits.
    Chou KS; Blumoff JZ; Wang CS; Reinhold PC; Axline CJ; Gao YY; Frunzio L; Devoret MH; Jiang L; Schoelkopf RJ
    Nature; 2018 Sep; 561(7723):368-373. PubMed ID: 30185908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-speed linear optics quantum computing using active feed-forward.
    Prevedel R; Walther P; Tiefenbacher F; Böhi P; Kaltenbaek R; Jennewein T; Zeilinger A
    Nature; 2007 Jan; 445(7123):65-9. PubMed ID: 17203057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Encoded-Fusion-Based Quantum Computation for High Thresholds with Linear Optics.
    Song W; Kang N; Kim YS; Lee SW
    Phys Rev Lett; 2024 Aug; 133(5):050605. PubMed ID: 39159083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demonstration of Controlled-Phase Gates between Two Error-Correctable Photonic Qubits.
    Xu Y; Ma Y; Cai W; Mu X; Dai W; Wang W; Hu L; Li X; Han J; Wang H; Song YP; Yang ZB; Zheng SB; Sun L
    Phys Rev Lett; 2020 Mar; 124(12):120501. PubMed ID: 32281851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient quantum computation with probabilistic quantum gates.
    Duan LM; Raussendorf R
    Phys Rev Lett; 2005 Aug; 95(8):080503. PubMed ID: 16196843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring Fusion-Based Error Correction for High Thresholds to Biased Fusion Failures.
    Sahay K; Claes J; Puri S
    Phys Rev Lett; 2023 Sep; 131(12):120604. PubMed ID: 37802953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Teleportation-based realization of an optical quantum two-qubit entangling gate.
    Gao WB; Goebel AM; Lu CY; Dai HN; Wagenknecht C; Zhang Q; Zhao B; Peng CZ; Chen ZB; Chen YA; Pan JW
    Proc Natl Acad Sci U S A; 2010 Dec; 107(49):20869-74. PubMed ID: 21098305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heralded Three-Photon Entanglement from a Single-Photon Source on a Photonic Chip.
    Chen S; Peng LC; Guo YP; Gu XM; Ding X; Liu RZ; Zhao JY; You X; Qin J; Wang YF; He YM; Renema JJ; Huo YH; Wang H; Lu CY; Pan JW
    Phys Rev Lett; 2024 Mar; 132(13):130603. PubMed ID: 38613293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fault-tolerant topological one-way quantum computation with probabilistic two-qubit gates.
    Fujii K; Tokunaga Y
    Phys Rev Lett; 2010 Dec; 105(25):250503. PubMed ID: 21231570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fault-Tolerant Logical Gates in the IBM Quantum Experience.
    Harper R; Flammia ST
    Phys Rev Lett; 2019 Mar; 122(8):080504. PubMed ID: 30932564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid quantum logic and a test of Bell's inequality using two different atomic isotopes.
    Ballance CJ; Schäfer VM; Home JP; Szwer DJ; Webster SC; Allcock DT; Linke NM; Harty TP; Aude Craik DP; Stacey DN; Steane AM; Lucas DM
    Nature; 2015 Dec; 528(7582):384-6. PubMed ID: 26672554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental demonstration of continuous quantum error correction.
    Livingston WP; Blok MS; Flurin E; Dressel J; Jordan AN; Siddiqi I
    Nat Commun; 2022 Apr; 13(1):2307. PubMed ID: 35484135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-overhead fault-tolerant quantum computing using long-range connectivity.
    Cohen LZ; Kim IH; Bartlett SD; Brown BJ
    Sci Adv; 2022 May; 8(20):eabn1717. PubMed ID: 35594359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel entangling operations on a universal ion-trap quantum computer.
    Figgatt C; Ostrander A; Linke NM; Landsman KA; Zhu D; Maslov D; Monroe C
    Nature; 2019 Aug; 572(7769):368-372. PubMed ID: 31341283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.