These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36805943)

  • 1. Dynamic morphology imaging of cardiomyocytes based on AFM.
    Cheng C; Wang X; Dong J; Yang F; Ju T; Wang Z
    Nanotechnology; 2023 Mar; 34(24):. PubMed ID: 36805943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical Characterization of Human Pluripotent Stem Cell-Derived Cardiomyocytes by Use of Atomic Force Microscopy.
    Pribyl J; Pešl M; Caluori G; Acimovic I; Jelinkova S; Dvorak P; Skladal P; Rotrekl V
    Methods Mol Biol; 2019; 1886():343-353. PubMed ID: 30374878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous AFM Investigation of the Single Cardiomyocyte Electro-Chemo-Mechanics During Excitation-Contraction Coupling.
    Caluori G; Raiteri R; Tedesco M
    Methods Mol Biol; 2019; 1886():355-367. PubMed ID: 30374879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous assessment of radial and axial myocyte mechanics by combining atomic force microscopy and carbon fibre techniques.
    Peyronnet R; Desai A; Edelmann JC; Cameron BA; Emig R; Kohl P; Dean D
    Philos Trans R Soc Lond B Biol Sci; 2022 Nov; 377(1864):20210326. PubMed ID: 36189808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic force mechanobiology of pluripotent stem cell-derived cardiomyocytes.
    Liu J; Sun N; Bruce MA; Wu JC; Butte MJ
    PLoS One; 2012; 7(5):e37559. PubMed ID: 22624048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical Characterization of Cardiomyocyte Using PDMS Pillar with Microgrooves.
    Oyunbaatar NE; Lee DH; Patil SJ; Kim ES; Lee DW
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27517924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic force spectroscopy is a promising tool to study contractile properties of cardiac cells.
    Kabanov D; Klimovic S; Rotrekl V; Pesl M; Pribyl J
    Micron; 2022 Apr; 155():103199. PubMed ID: 35140035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic force microscopy observation of lipopolysaccharide-induced cardiomyocyte cytoskeleton reorganization.
    Wang L; Chen T; Zhou X; Huang Q; Jin C
    Micron; 2013 Aug; 51():48-53. PubMed ID: 23906659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic AFM elastography reveals phase dependent mechanical heterogeneity of beating cardiac myocytes.
    Azeloglu EU; Costa KD
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():7180-3. PubMed ID: 19965272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the mechanodynamic response of cardiomyocytes with atomic force microscopy.
    Chang WT; Yu D; Lai YC; Lin KY; Liau I
    Anal Chem; 2013 Feb; 85(3):1395-400. PubMed ID: 23265281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Video image-based analysis of single human induced pluripotent stem cell derived cardiomyocyte beating dynamics using digital image correlation.
    Ahola A; Kiviaho AL; Larsson K; Honkanen M; Aalto-Setälä K; Hyttinen J
    Biomed Eng Online; 2014 Apr; 13():39. PubMed ID: 24708714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-speed atomic force microscopy: imaging and force spectroscopy.
    Eghiaian F; Rico F; Colom A; Casuso I; Scheuring S
    FEBS Lett; 2014 Oct; 588(19):3631-8. PubMed ID: 24937145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AFM nano-mechanical study of the beating profile of hiPSC-derived cardiomyocytes beating bodies WT and DM1.
    Dinarelli S; Girasole M; Spitalieri P; Talarico RV; Murdocca M; Botta A; Novelli G; Mango R; Sangiuolo F; Longo G
    J Mol Recognit; 2018 Oct; 31(10):e2725. PubMed ID: 29748973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. hESC derived cardiomyocyte biosensor to detect the different types of arrhythmogenic properties of drugs.
    Pivato R; Klimovic S; Kabanov D; Sverák F; Pesl M; Pribyl J; Rotrekl V
    Anal Chim Acta; 2022 Jul; 1216():339959. PubMed ID: 35691674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of the union method of microelectrode array and AFM for the recording of electromechanical activities in living cardiomyocytes.
    Tian J; Tu C; Huang B; Liang Y; Zhou J; Ye X
    Eur Biophys J; 2017 Jul; 46(5):495-507. PubMed ID: 28012038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biophysical properties of cardiomyocyte surface explored by multiparametric AFM.
    Smolyakov G; Cauquil M; Severac C; Lachaize V; Guilbeau-Frugier C; Sénard JM; Galés C; Dague E
    J Struct Biol; 2017 Apr; 198(1):28-37. PubMed ID: 28263874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new integrated system combining atomic force microscopy and micro-electrode array for measuring the mechanical properties of living cardiac myocytes.
    Saenz Cogollo JF; Tedesco M; Martinoia S; Raiteri R
    Biomed Microdevices; 2011 Aug; 13(4):613-21. PubMed ID: 21455755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events.
    Suzuki Y; Sakai N; Yoshida A; Uekusa Y; Yagi A; Imaoka Y; Ito S; Karaki K; Takeyasu K
    Sci Rep; 2013; 3():2131. PubMed ID: 23823461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Model for Characterizing Contractile Behaviors and Mechanical Properties of a Cardiomyocyte.
    Zhang C; Wang W; He W; Xi N; Wang Y; Liu L
    Biophys J; 2018 Jan; 114(1):188-200. PubMed ID: 29320686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.