These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 3680623)

  • 1. Disappearance of Rohon-Beard neurons from the spinal cord of larval Xenopus laevis.
    Lamborghini JE
    J Comp Neurol; 1987 Oct; 264(1):47-55. PubMed ID: 3680623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skin impulse excitation of spinal sensory neurons in developing Xenopus laevis (Daudin) tadpoles.
    James LJ; Soffe SR
    J Exp Biol; 2011 Oct; 214(Pt 20):3341-50. PubMed ID: 21957097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rohon-Beard cells in frog development: a study of temporal and spatial changes in a transient cell population.
    Eichler VB; Porter RA
    J Comp Neurol; 1981 Nov; 203(1):121-30. PubMed ID: 6975782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructural development of Rohon-Beard neurons: loss of intramitochondrial granules parallels loss of calcium action potentials.
    Lamborghini JE; Revenaugh M; Spitzer NC
    J Comp Neurol; 1979 Feb; 183(4):741-52. PubMed ID: 762270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rohon-beard cells and other large neurons in Xenopus embryos originate during gastrulation.
    Lamborghini JE
    J Comp Neurol; 1980 Jan; 189(2):323-33. PubMed ID: 7364967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth and death of rohon-Beard cells in Rana pipiens and Ceratophrys ornata.
    Kollros JJ; Bovbjerg AM
    J Morphol; 1997 Apr; 232(1):67-78. PubMed ID: 9068202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An essential role of the neuronal cell adhesion molecule contactin in development of the Xenopus primary sensory system.
    Fujita N; Saito R; Watanabe K; Nagata S
    Dev Biol; 2000 May; 221(2):308-20. PubMed ID: 10790328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinal cord development in anuran larvae: I. Primary and secondary neurons.
    Forehand CJ; Farel PB
    J Comp Neurol; 1982 Aug; 209(4):386-94. PubMed ID: 6982287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow degeneration of zebrafish Rohon-Beard neurons during programmed cell death.
    Reyes R; Haendel M; Grant D; Melancon E; Eisen JS
    Dev Dyn; 2004 Jan; 229(1):30-41. PubMed ID: 14699575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth cones and the formation of central and peripheral neurites by sensory neurones in amphibian embryos.
    Roberts A; Patton DT
    J Neurosci Res; 1985; 13(1-2):23-38. PubMed ID: 3871863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The early development of the primary sensory neurones in an amphibian embryo: a scanning electron microscope study.
    Taylor JS; Roberts A
    J Embryol Exp Morphol; 1983 Jun; 75():49-66. PubMed ID: 6886616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axonal growth cones in the developing amphibian spinal cord.
    Nordlander RH
    J Comp Neurol; 1987 Sep; 263(4):485-96. PubMed ID: 3667985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unmyelinated cutaneous afferent neurons activate two types of excitatory amino acid receptor in the spinal cord of Xenopus laevis embryos.
    Sillar KT; Roberts A
    J Neurosci; 1988 Apr; 8(4):1350-60. PubMed ID: 2895802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinal cord development in anuran larvae: II. Ascending and descending pathways.
    Forehand CJ; Farel PB
    J Comp Neurol; 1982 Aug; 209(4):395-408. PubMed ID: 6982288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensory physiology, anatomy and immunohistochemistry of Rohon-Beard neurones in embryos of Xenopus laevis.
    Clarke JD; Hayes BP; Hunt SP; Roberts A
    J Physiol; 1984 Mar; 348():511-25. PubMed ID: 6201612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing descending neurons of the early Xenopus tail spinal cord in the caudal spinal cord of early Xenopus.
    Nordlander RH
    J Comp Neurol; 1984 Sep; 228(1):117-28. PubMed ID: 6480904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of spinocerebellar afferents in the clawed toad, Xenopus laevis.
    van der Linden JA; ten Donkelaar HJ; de Boer-van Huizen R
    J Comp Neurol; 1988 Nov; 277(1):41-52. PubMed ID: 3198795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage- and stage-dependent uncoupling of Rohon-Beard neurones during embryonic development of Xenopus tadpoles.
    Spitzer NC
    J Physiol; 1982 Sep; 330():145-62. PubMed ID: 7175739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of the spinal nerves in the lamprey: I. Rohon-Beard cells and interneurons.
    Nakao T; Ishizawa A
    J Comp Neurol; 1987 Feb; 256(3):342-55. PubMed ID: 3571509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Programmed cell death in zebrafish rohon beard neurons is influenced by TrkC1/NT-3 signaling.
    Williams JA; Barrios A; Gatchalian C; Rubin L; Wilson SW; Holder N
    Dev Biol; 2000 Oct; 226(2):220-30. PubMed ID: 11023682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.