These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 36806671)
1. Effect of graphene-based nanomaterials on corneal wound healing in vitro. Fukuto A; Kang J; Gates BL; Sannajust K; Pinkerton KE; Van Winkle LS; Kiuchi Y; Leonard BC; Thomasy SM Exp Eye Res; 2023 Apr; 229():109419. PubMed ID: 36806671 [TBL] [Abstract][Full Text] [Related]
2. Transcorneal delivery of topically applied silver nanoparticles does not delay epithelial wound healing. Kim S; Gates BL; Chang M; Pinkerton KE; Van Winkle L; Murphy CJ; Leonard BC; Demokritou P; Thomasy SM NanoImpact; 2021 Oct; 24():100352. PubMed ID: 35559825 [TBL] [Abstract][Full Text] [Related]
3. Metal Oxide Engineered Nanomaterials Modulate Rabbit Corneal Fibroblast to Myofibroblast Transformation. Fukuto A; Kim S; Kang J; Gates BL; Chang MW; Pinkerton KE; Van Winkle LS; Kiuchi Y; Murphy CJ; Leonard BC; Thomasy SM Transl Vis Sci Technol; 2021 Oct; 10(12):23. PubMed ID: 34661622 [TBL] [Abstract][Full Text] [Related]
4. Mechanisms of surface groups regulating developmental toxicity of graphene-based nanomaterials via glycerophospholipid metabolic pathway. Chen Y; Mi X; Cao Z; Guo A; Li C; Yao H; Yuan P Sci Total Environ; 2024 Aug; 938():173576. PubMed ID: 38810761 [TBL] [Abstract][Full Text] [Related]
5. Differential effects of Hsp90 inhibition on corneal cells in vitro and in vivo. Raghunathan V; Edwards SG; Leonard BC; Kim S; Evashenk AT; Song Y; Rewinski E; Marangakis Price A; Hoehn A; Chang C; Reilly CM; Muppala S; Murphy CJ; Thomasy SM Exp Eye Res; 2021 Jan; 202():108362. PubMed ID: 33220237 [TBL] [Abstract][Full Text] [Related]
6. Influence of the properties of different graphene-based nanomaterials dispersed in polycaprolactone membranes on astrocytic differentiation. Mantecón-Oria M; Tapia O; Lafarga M; Berciano MT; Munuera JM; Villar-Rodil S; Paredes JI; Rivero MJ; Diban N; Urtiaga A Sci Rep; 2022 Aug; 12(1):13408. PubMed ID: 35927565 [TBL] [Abstract][Full Text] [Related]
7. Latrunculin B and substratum stiffness regulate corneal fibroblast to myofibroblast transformation. Thomasy SM; Raghunathan VK; Miyagi H; Evashenk AT; Sermeno JC; Tripp GK; Morgan JT; Murphy CJ Exp Eye Res; 2018 May; 170():101-107. PubMed ID: 29421383 [TBL] [Abstract][Full Text] [Related]
8. Nano-biointeractions of PEGylated and bare reduced graphene oxide on lung alveolar epithelial cells: A comparative in vitro study. Reshma SC; Syama S; Mohanan PV Colloids Surf B Biointerfaces; 2016 Apr; 140():104-116. PubMed ID: 26741270 [TBL] [Abstract][Full Text] [Related]
9. Intracellular localization and toxicity of graphene oxide and reduced graphene oxide nanoplatelets to mussel hemocytes in vitro. Katsumiti A; Tomovska R; Cajaraville MP Aquat Toxicol; 2017 Jul; 188():138-147. PubMed ID: 28521151 [TBL] [Abstract][Full Text] [Related]
10. Engineered metal oxide nanomaterials inhibit corneal epithelial wound healing Kim S; Gates B; Leonard BC; Gragg M; Pinkerton KE; Winkle LV; Murphy CJ; Pyrgiotakis G; Zhang Z; Demokritou P; Thomasy SM NanoImpact; 2020 Jan; 17():. PubMed ID: 32154443 [TBL] [Abstract][Full Text] [Related]
11. Respiratory Toxicology of Graphene-Based Nanomaterials: A Review. Kong C; Chen J; Li P; Wu Y; Zhang G; Sang B; Li R; Shi Y; Cui X; Zhou T Toxics; 2024 Jan; 12(1):. PubMed ID: 38251037 [TBL] [Abstract][Full Text] [Related]
12. Effects of different graphene-based nanomaterials as elicitors on growth and ganoderic acid production by Ganoderma lucidum. Darzian Rostami A; Yazdian F; Mirjani R; Soleimani M Biotechnol Prog; 2020 Sep; 36(5):e3027. PubMed ID: 32432828 [TBL] [Abstract][Full Text] [Related]
13. Graphene-Based Nanomaterials in Soil: Ecotoxicity Assessment Using Mendonça MCP; Rodrigues NP; de Jesus MB; Amorim MJB Nanomaterials (Basel); 2019 Jun; 9(6):. PubMed ID: 31195669 [TBL] [Abstract][Full Text] [Related]
14. Cytotoxicity of 2D engineered nanomaterials in pulmonary and corneal epithelium. Domanico M; Fukuto A; Tran LM; Bustamante JM; Edwards PC; Pinkerton KE; Thomasy SM; Van Winkle LS NanoImpact; 2022 Apr; 26():100404. PubMed ID: 35560287 [TBL] [Abstract][Full Text] [Related]
15. A systems toxicology approach reveals the Wnt-MAPK crosstalk pathway mediated reproductive failure in Caenorhabditis elegans exposed to graphene oxide (GO) but not to reduced graphene oxide (rGO). Chatterjee N; Kim Y; Yang J; Roca CP; Joo SW; Choi J Nanotoxicology; 2017 Feb; 11(1):76-86. PubMed ID: 27901397 [TBL] [Abstract][Full Text] [Related]
16. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Sanchez VC; Jachak A; Hurt RH; Kane AB Chem Res Toxicol; 2012 Jan; 25(1):15-34. PubMed ID: 21954945 [TBL] [Abstract][Full Text] [Related]
17. A systems toxicology approach to the surface functionality control of graphene-cell interactions. Chatterjee N; Eom HJ; Choi J Biomaterials; 2014 Jan; 35(4):1109-27. PubMed ID: 24211078 [TBL] [Abstract][Full Text] [Related]
18. Size- and Oxidation-Dependent Toxicity of Graphene Oxide Nanomaterials in Embryonic Zebrafish. Lopez RM; White JR; Truong L; Tanguay RL Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407167 [TBL] [Abstract][Full Text] [Related]
19. Increased platelet-activating factor receptor gene expression by corneal epithelial wound healing. Ma X; Bazan HE Invest Ophthalmol Vis Sci; 2000 Jun; 41(7):1696-702. PubMed ID: 10845588 [TBL] [Abstract][Full Text] [Related]
20. An in vitro evaluation of graphene oxide reduced by Ganoderma spp. in human breast cancer cells (MDA-MB-231). Gurunathan S; Han J; Park JH; Kim JH Int J Nanomedicine; 2014; 9():1783-97. PubMed ID: 24741313 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]