These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36806975)

  • 41. Walking around the preferred speed: examination of metabolic, perceptual, spatiotemporal and stability parameters.
    Majed L; Ibrahim R; Lock MJ; Jabbour G
    Front Physiol; 2024; 15():1357172. PubMed ID: 38405123
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gait-specific energetics contributes to economical walking and running in emus and ostriches.
    Watson RR; Rubenson J; Coder L; Hoyt DF; Propert MW; Marsh RL
    Proc Biol Sci; 2011 Jul; 278(1714):2040-6. PubMed ID: 21123267
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Overground versus treadmill walking in Parkinson's disease: Relationship between speed and spatiotemporal gait metrics.
    Lu C; Louie KH; Twedell EL; Vitek JL; MacKinnon CD; Cooper SE
    Gait Posture; 2022 Mar; 93():96-101. PubMed ID: 35121487
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Energy cost of gait in children and the effect of speed, age, and body size.
    Gagnat Y; Oudenhoven LM; Brændvik SM; Bardal EM; Roeleveld K
    Gait Posture; 2022 Oct; 98():146-152. PubMed ID: 36126534
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Speed and temporal-distance adaptations during treadmill and overground walking following stroke.
    Bayat R; Barbeau H; Lamontagne A
    Neurorehabil Neural Repair; 2005 Jun; 19(2):115-24. PubMed ID: 15883355
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanisms used to increase propulsive forces on a treadmill in older adults.
    Hedrick EA; Parker SM; Hsiao H; Knarr BA
    J Biomech; 2021 Jan; 115():110139. PubMed ID: 33321429
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Walking on a treadmill improves the stride length-cadence relationship in individuals with Parkinson's disease.
    Ambrus M; Sanchez JA; Fernandez-Del-Olmo M
    Gait Posture; 2019 Feb; 68():136-140. PubMed ID: 30476690
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of balance support on the energy cost of walking after stroke.
    Ijmker T; Houdijk H; Lamoth CJ; Jarbandhan AV; Rijntjes D; Beek PJ; van der Woude LH
    Arch Phys Med Rehabil; 2013 Nov; 94(11):2255-61. PubMed ID: 23702394
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Energy Cost of Slow and Normal Gait Speeds in Low and Normally Functioning Adults.
    Rowley TW; Cho C; Swartz AM; Staudenmayer J; Hyngstrom A; Keenan KG; Welch WA; Strath SJ
    Am J Phys Med Rehabil; 2019 Nov; 98(11):976-981. PubMed ID: 31135461
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Step time asymmetry but not step length asymmetry is adapted to optimize energy cost of split-belt treadmill walking.
    Stenum J; Choi JT
    J Physiol; 2020 Sep; 598(18):4063-4078. PubMed ID: 32662881
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparison of Treadmill and Overground Walking in Children and Adolescents.
    Jung T; Kim Y; Kelly LE; Wagatsuma M; Jung Y; Abel MF
    Percept Mot Skills; 2021 Jun; 128(3):988-1001. PubMed ID: 33567988
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Do humans exploit the metabolic and mechanical benefits of arm swing across slow to fast walking speeds?
    Thomas SA; Vega D; Arellano CJ
    J Biomech; 2021 Jan; 115():110181. PubMed ID: 33383459
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Overground vs. treadmill walking on biomechanical energy harvesting: An energetics and EMG study.
    Martin JP; Li Q
    Gait Posture; 2017 Feb; 52():124-128. PubMed ID: 27912153
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of belt speed on the body's center of mass motion relative to the center of pressure during treadmill walking.
    Lu HL; Lu TW; Lin HC; Hsieh HJ; Chan WP
    Gait Posture; 2017 Jan; 51():109-115. PubMed ID: 27744249
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of speed adaptation while walking on an omnidirectional treadmill.
    Soni S; Lamontagne A
    J Neuroeng Rehabil; 2020 Nov; 17(1):153. PubMed ID: 33228761
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Excess body weight and gait influence energy cost of walking in older adults.
    Laroche DP; Marques NR; Shumila HN; Logan CR; Laurent RS; Gonçalves M
    Med Sci Sports Exerc; 2015 May; 47(5):1017-25. PubMed ID: 25202852
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Relationship Between Walking Speed and the Energetic Cost of Walking in Persons With Multiple Sclerosis and Healthy Controls: A Systematic Review.
    Theunissen K; Plasqui G; Boonen A; Brauwers B; Timmermans A; Meyns P; Meijer K; Feys P
    Neurorehabil Neural Repair; 2021 Jun; 35(6):486-500. PubMed ID: 33847188
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Commingling Effects of Anterior Load and Walking Surface on Dynamic Gait Stability in Young Adults.
    Simpkins C; Ahn J; Buehler R; Ban R; Wells M; Yang F
    J Appl Biomech; 2024 Feb; 40(1):66-72. PubMed ID: 37890841
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dataset of energetics and biomechanics of self-paced and fixed speed treadmill walking at multiple speeds.
    Theunissen K; Van Hooren B; Plasqui G; Meijer K
    Data Brief; 2022 Apr; 41():107915. PubMed ID: 35242908
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Associations Between Foot Placement Asymmetries and Metabolic Cost of Transport in Hemiparetic Gait.
    Finley JM; Bastian AJ
    Neurorehabil Neural Repair; 2017 Feb; 31(2):168-177. PubMed ID: 27798378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.