BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36807342)

  • 1. KidneyNetwork: using kidney-derived gene expression data to predict and prioritize novel genes involved in kidney disease.
    Boulogne F; Claus LR; Wiersma H; Oelen R; Schukking F; de Klein N; Li S; Westra HJ; van der Zwaag B; van Reekum F; ; Sierks D; Schönauer R; Li Z; Bijlsma EK; Bos WJW; Halbritter J; Knoers NVAM; Besse W; Deelen P; Franke L; van Eerde AM
    Eur J Hum Genet; 2023 Nov; 31(11):1300-1308. PubMed ID: 36807342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The diagnostic yield of exome sequencing in liver diseases from a curated gene panel.
    Kong XF; Bogyo K; Kapoor S; Shea PR; Groopman EE; Thomas-Wilson A; Cocchi E; Milo Rasouly H; Zheng B; Sun S; Zhang J; Martinez M; Vittorio JM; Dove LM; Marasa M; Wang TC; Verna EC; Worman HJ; Gharavi AG; Goldstein DB; Wattacheril J
    Sci Rep; 2023 Dec; 13(1):21540. PubMed ID: 38057357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using multi-scale genomics to associate poorly annotated genes with rare diseases.
    Canavati C; Sherill-Rofe D; Kamal L; Bloch I; Zahdeh F; Sharon E; Terespolsky B; Allan IA; Rabie G; Kawas M; Kassem H; Avraham KB; Renbaum P; Levy-Lahad E; Kanaan M; Tabach Y
    Genome Med; 2024 Jan; 16(1):4. PubMed ID: 38178268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Primary URECs: a source to better understand the pathology of renal tubular epithelia in pediatric hereditary cystic kidney diseases.
    Ziegler WH; Lüdiger S; Hassan F; Georgiadis ME; Swolana K; Khera A; Mertens A; Franke D; Wohlgemuth K; Dahmer-Heath M; König J; Dafinger C; Liebau MC; Cetiner M; Bergmann C; Soetje B; Haffner D
    Orphanet J Rare Dis; 2022 Mar; 17(1):122. PubMed ID: 35264234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Germline Mutations for Novel Candidate Predisposition Genes in Sporadic Schwannomatosis.
    Min BJ; Kang YK; Chung YG; Seo ME; Chang KB; Joo MW
    Clin Orthop Relat Res; 2020 Nov; 478(11):2442-2450. PubMed ID: 32281771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Re-analysis of whole-exome sequencing data uncovers novel diagnostic variants and improves molecular diagnostic yields for sudden death and idiopathic diseases.
    Salfati EL; Spencer EG; Topol SE; Muse ED; Rueda M; Lucas JR; Wagner GN; Campman S; Topol EJ; Torkamani A
    Genome Med; 2019 Dec; 11(1):83. PubMed ID: 31847883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prioritizing genomic variants through neuro-symbolic, knowledge-enhanced learning.
    Althagafi A; Zhapa-Camacho F; Hoehndorf R
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38696757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Results of targeted next-generation sequencing in children with cystic kidney diseases often change the clinical diagnosis.
    Obeidova L; Seeman T; Fencl F; Blahova K; Hojny J; Elisakova V; Reiterova J; Stekrova J
    PLoS One; 2020; 15(6):e0235071. PubMed ID: 32574212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beyond Panel-Based Testing: Exome Analysis Increases Sensitivity for Diagnosis of Genetic Kidney Disease.
    Wilson PC; Love-Gregory L; Corliss M; McNulty S; Heusel JW; Gaut JP
    Kidney360; 2020 Aug; 1(8):772-780. PubMed ID: 35372954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the diagnostic yield of exome- sequencing by predicting gene-phenotype associations using large-scale gene expression analysis.
    Deelen P; van Dam S; Herkert JC; Karjalainen JM; Brugge H; Abbott KM; van Diemen CC; van der Zwaag PA; Gerkes EH; Zonneveld-Huijssoon E; Boer-Bergsma JJ; Folkertsma P; Gillett T; van der Velde KJ; Kanninga R; van den Akker PC; Jan SZ; Hoorntje ET; Te Rijdt WP; Vos YJ; Jongbloed JDH; van Ravenswaaij-Arts CMA; Sinke R; Sikkema-Raddatz B; Kerstjens-Frederikse WS; Swertz MA; Franke L
    Nat Commun; 2019 Jun; 10(1):2837. PubMed ID: 31253775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A random set scoring model for prioritization of disease candidate genes using protein complexes and data-mining of GeneRIF, OMIM and PubMed records.
    Jiang L; Edwards SM; Thomsen B; Workman CT; Guldbrandtsen B; Sørensen P
    BMC Bioinformatics; 2014 Sep; 15(1):315. PubMed ID: 25253562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exome Sequencing and Identification of Phenocopies in Patients With Clinically Presumed Hereditary Nephropathies.
    Riedhammer KM; Braunisch MC; Günthner R; Wagner M; Hemmer C; Strom TM; Schmaderer C; Renders L; Tasic V; Gucev Z; Nushi-Stavileci V; Putnik J; Stajić N; Weidenbusch M; Uetz B; Montoya C; Strotmann P; Ponsel S; Lange-Sperandio B; Hoefele J
    Am J Kidney Dis; 2020 Oct; 76(4):460-470. PubMed ID: 32359821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A kidney-disease gene panel allows a comprehensive genetic diagnosis of cystic and glomerular inherited kidney diseases.
    Bullich G; Domingo-Gallego A; Vargas I; Ruiz P; Lorente-Grandoso L; Furlano M; Fraga G; Madrid Á; Ariceta G; Borregán M; Piñero-Fernández JA; Rodríguez-Peña L; Ballesta-Martínez MJ; Llano-Rivas I; Meñica MA; Ballarín J; Torrents D; Torra R; Ars E
    Kidney Int; 2018 Aug; 94(2):363-371. PubMed ID: 29801666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prioritization of genes driving congenital phenotypes of patients with de novo genomic structural variants.
    Middelkamp S; Vlaar JM; Giltay J; Korzelius J; Besselink N; Boymans S; Janssen R; de la Fonteijne L; van Binsbergen E; van Roosmalen MJ; Hochstenbach R; Giachino D; Talkowski ME; Kloosterman WP; Cuppen E
    Genome Med; 2019 Dec; 11(1):79. PubMed ID: 31801603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exome Sequencing of a Clinical Population for Autosomal Dominant Polycystic Kidney Disease.
    Chang AR; Moore BS; Luo JZ; Sartori G; Fang B; Jacobs S; Abdalla Y; Taher M; Carey DJ; Triffo WJ; Singh G; Mirshahi T
    JAMA; 2022 Dec; 328(24):2412-2421. PubMed ID: 36573973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases.
    De La Vega FM; Chowdhury S; Moore B; Frise E; McCarthy J; Hernandez EJ; Wong T; James K; Guidugli L; Agrawal PB; Genetti CA; Brownstein CA; Beggs AH; Löscher BS; Franke A; Boone B; Levy SE; Õunap K; Pajusalu S; Huentelman M; Ramsey K; Naymik M; Narayanan V; Veeraraghavan N; Billings P; Reese MG; Yandell M; Kingsmore SF
    Genome Med; 2021 Oct; 13(1):153. PubMed ID: 34645491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequencing of a 'mouse azoospermia' gene panel in azoospermic men: identification of RNF212 and STAG3 mutations as novel genetic causes of meiotic arrest.
    Riera-Escamilla A; Enguita-Marruedo A; Moreno-Mendoza D; Chianese C; Sleddens-Linkels E; Contini E; Benelli M; Natali A; Colpi GM; Ruiz-Castañé E; Maggi M; Baarends WM; Krausz C
    Hum Reprod; 2019 Jun; 34(6):978-988. PubMed ID: 31125047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Massively parallel sequencing and targeted exomes in familial kidney disease can diagnose underlying genetic disorders.
    Mallett AJ; McCarthy HJ; Ho G; Holman K; Farnsworth E; Patel C; Fletcher JT; Mallawaarachchi A; Quinlan C; Bennetts B; Alexander SI
    Kidney Int; 2017 Dec; 92(6):1493-1506. PubMed ID: 28844315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diagnosis of monogenic chronic kidney diseases.
    Armstrong ME; Thomas CP
    Curr Opin Nephrol Hypertens; 2019 Mar; 28(2):183-194. PubMed ID: 30601180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted whole exome sequencing and Drosophila modelling to unveil the molecular basis of primary ovarian insufficiency.
    Bestetti I; Barbieri C; Sironi A; Specchia V; Yatsenko SA; De Donno MD; Caslini C; Gentilini D; Crippa M; Larizza L; Marozzi A; Rajkovic A; Toniolo D; Bozzetti MP; Finelli P
    Hum Reprod; 2021 Oct; 36(11):2975-2991. PubMed ID: 34480478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.