These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 36807438)
1. Thermal transport across copper-water interfaces according to deep potential molecular dynamics. Li Z; Tan X; Fu Z; Liu L; Yang JY Phys Chem Chem Phys; 2023 Mar; 25(9):6746-6756. PubMed ID: 36807438 [TBL] [Abstract][Full Text] [Related]
2. Thermal transport across TiO2-H2O interface involving water dissociation: Ab initio-assisted deep potential molecular dynamics. Li Z; Wang J; Yang C; Liu L; Yang JY J Chem Phys; 2023 Oct; 159(14):. PubMed ID: 37811827 [TBL] [Abstract][Full Text] [Related]
3. Molecular Simulations of Thermal Transport across Iron Oxide-Hydrocarbon Interfaces. Carman F; Ewen JP; Bresme F; Wu B; Dini D ACS Appl Mater Interfaces; 2024 Oct; 16(43):59452-59467. PubMed ID: 39405434 [TBL] [Abstract][Full Text] [Related]
4. Thermal conductance of the water-gold interface: The impact of the treatment of surface polarization in non-equilibrium molecular simulations. Olarte-Plata JD; Bresme F J Chem Phys; 2022 May; 156(20):204701. PubMed ID: 35649827 [TBL] [Abstract][Full Text] [Related]
5. Interfacial Defect Vibrations Enhance Thermal Transport in Amorphous Multilayers with Ultrahigh Thermal Boundary Conductance. Giri A; King SW; Lanford WA; Mei AB; Merrill D; Li L; Oviedo R; Richards J; Olson DH; Braun JL; Gaskins JT; Deangelis F; Henry A; Hopkins PE Adv Mater; 2018 Nov; 30(44):e1804097. PubMed ID: 30222218 [TBL] [Abstract][Full Text] [Related]
6. Origin of Hydrophilic Surface Functionalization-Induced Thermal Conductance Enhancement across Solid-Water Interfaces. Huang D; Ma R; Zhang T; Luo T ACS Appl Mater Interfaces; 2018 Aug; 10(33):28159-28165. PubMed ID: 30056700 [TBL] [Abstract][Full Text] [Related]
7. Deep neural network-based molecular dynamics simulations for AlxGa1-xN alloys and their thermal properties. Liu X; Wang D; Wang B; Wang Q; Sun J; Xiong Y J Phys Condens Matter; 2024 Sep; ():. PubMed ID: 39321835 [TBL] [Abstract][Full Text] [Related]
8. Molecular dynamics investigation on the interfacial thermal resistance between annealed pyrolytic graphite and copper. Jiang X; Li X; Li D; Su L; Zhang T; Chen B; Li Z RSC Adv; 2024 Feb; 14(10):7073-7080. PubMed ID: 38414984 [TBL] [Abstract][Full Text] [Related]
9. Prediction of Bi Roy Chowdhury P; Shi J; Feng T; Ruan X ACS Appl Mater Interfaces; 2021 Jan; 13(3):4636-4642. PubMed ID: 33433205 [TBL] [Abstract][Full Text] [Related]
10. Regulated Thermal Boundary Conductance between Copper and Diamond through Nanoscale Interfacial Rough Structures. Wang Z; Sun F; Liu Z; Zheng L; Wang D; Feng Y ACS Appl Mater Interfaces; 2023 Mar; 15(12):16162-16176. PubMed ID: 36924078 [TBL] [Abstract][Full Text] [Related]
11. Thermal resistance of nanoscopic liquid-liquid interfaces: dependence on chemistry and molecular architecture. Patel HA; Garde S; Keblinski P Nano Lett; 2005 Nov; 5(11):2225-31. PubMed ID: 16277458 [TBL] [Abstract][Full Text] [Related]
12. A comparative study of interfacial thermal conductance between metal and semiconductor. Wu K; Zhang L; Wang D; Li F; Zhang P; Sang L; Liao M; Tang K; Ye J; Gu S Sci Rep; 2022 Nov; 12(1):19907. PubMed ID: 36402811 [TBL] [Abstract][Full Text] [Related]
14. Optimization of Thermal Conductance at Interfaces Using Machine Learning Algorithms. Rustam S; Schram M; Lu Z; Chaka AM; Rosenthal WS; Pfaendtner J ACS Appl Mater Interfaces; 2022 Jul; 14(28):32590-32597. PubMed ID: 35802814 [TBL] [Abstract][Full Text] [Related]
15. Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects. Liu Y; Hu C; Huang J; Sumpter BG; Qiao R J Chem Phys; 2015 Jun; 142(24):244703. PubMed ID: 26133445 [TBL] [Abstract][Full Text] [Related]
16. Effect of molecular film thickness on thermal conduction across solid-film interfaces. Liang Z; Tsai HL Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061603. PubMed ID: 21797376 [TBL] [Abstract][Full Text] [Related]
17. The interfacial thermal conductance spectrum in nonequilibrium molecular dynamics simulations considering anharmonicity, asymmetry and quantum effects. Xu Y; Yang L; Zhou Y Phys Chem Chem Phys; 2022 Oct; 24(39):24503-24513. PubMed ID: 36193724 [TBL] [Abstract][Full Text] [Related]
18. Thermal conductivity and structural behavior of confined H Yousefi F; Farzadian O; Shafiee M Nanotechnology; 2024 Mar; 35(21):. PubMed ID: 38335554 [TBL] [Abstract][Full Text] [Related]
19. Thermal conductivity of liquid argon in nanochannels from molecular dynamics simulations. Hyżorek K; Tretiakov KV J Chem Phys; 2016 May; 144(19):194507. PubMed ID: 27208958 [TBL] [Abstract][Full Text] [Related]
20. Thermal transport across the CoSb Yin K; Shi L; Zhong Y; Ma X; Li M; He X Phys Chem Chem Phys; 2023 Jan; 25(3):2517-2522. PubMed ID: 36602119 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]