These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36807438)

  • 21. Thermal Transport across SiC-Water Interfaces.
    Gonzalez-Valle CU; Kumar S; Ramos-Alvarado B
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):29179-29186. PubMed ID: 30063129
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vibrational mode frequency correction of liquid water in density functional theory molecular dynamics simulations with van der Waals correction.
    Zhong K; Yu CC; Dodia M; Bonn M; Nagata Y; Ohto T
    Phys Chem Chem Phys; 2020 Jun; 22(22):12785-12793. PubMed ID: 32467958
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of phosphorene/graphene heterojunctions for high and tunable interfacial thermal conductance.
    Liu X; Gao J; Zhang G; Zhang YW
    Nanoscale; 2018 Nov; 10(42):19854-19862. PubMed ID: 30335107
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A hydrogen bond-modulated soft nanoscale water channel for ion transport through liquid-liquid interfaces.
    Wen B; Sun C; Luo Z; Lu X; Wang H; Bai B
    Soft Matter; 2021 Nov; 17(42):9736-9744. PubMed ID: 34643637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-Assembled Monolayers for the Polymer/Semiconductor Interface with Improved Interfacial Thermal Management.
    Lu J; Yuan K; Sun F; Zheng K; Zhang Z; Zhu J; Wang X; Zhang X; Zhuang Y; Ma Y; Cao X; Zhang J; Tang D
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42708-42714. PubMed ID: 31625728
    [TBL] [Abstract][Full Text] [Related]  

  • 26. One-dimensional harmonic chain model of vibration-mode matching in solid-liquid interfacial thermal transport.
    Matsubara H; Surblys D; Ohara T
    Phys Rev E; 2023 Feb; 107(2-1):024103. PubMed ID: 36932576
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heterogeneous thermal conductance of nanoparticle-fluid interfaces: An atomistic nodal approach.
    Jiang M; Olarte-Plata JD; Bresme F
    J Chem Phys; 2022 Jan; 156(4):044701. PubMed ID: 35105082
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of nanoscale thermal transport and adsorption of liquid containing surfactant at solid-liquid interface via deep learning.
    Guo Y; Li G; Mabuchi T; Surblys D; Ohara T; Tokumasu T
    J Colloid Interface Sci; 2022 May; 613():587-596. PubMed ID: 35063787
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Graphene Layer Number-Dependent Heat Transport across Nickel/Graphene/Nickel Interfaces.
    Zhou J; Yang K; Yang B; Zhong B; Yao S; Ma Y; Song J; Fan T; Tang D; Zhu J; Liu Y
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):35237-35245. PubMed ID: 35876687
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal transport across flat and curved gold-water interfaces: Assessing the effects of the interfacial modeling parameters.
    Paniagua-Guerra LE; Ramos-Alvarado B
    J Chem Phys; 2023 Apr; 158(13):134717. PubMed ID: 37031121
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reducing Kapitza resistance between graphene/water interface via interfacial superlattice structure.
    Peng X; Jiang P; Ouyang Y; Lu S; Ren W; Chen J
    Nanotechnology; 2021 Oct; 33(3):. PubMed ID: 34644695
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of Deep Potentials of Molten MgCl
    Xu T; Li X; Wang Y; Tang Z
    ACS Appl Mater Interfaces; 2023 Mar; ():. PubMed ID: 36881968
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thickness-Independent Vibrational Thermal Conductance across Confined Solid-Solution Thin Films.
    Giri A; Cheaito R; Gaskins JT; Mimura T; Brown-Shaklee HJ; Medlin DL; Ihlefeld JF; Hopkins PE
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):12541-12549. PubMed ID: 33663216
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of optical phonons in intermediate layer-mediated thermal transport across solid interfaces.
    Lee E; Luo T
    Phys Chem Chem Phys; 2017 Jul; 19(28):18407-18415. PubMed ID: 28678278
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Atomic density effects on temperature characteristics and thermal transport at grain boundaries through a proper bin size selection.
    Vo TQ; Barisik M; Kim B
    J Chem Phys; 2016 May; 144(19):194707. PubMed ID: 27208965
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Atomic structure causing an obvious difference in thermal conductance at the Pd-H
    Li S; Chen Y; Zhao J; Wang C; Wei N
    Nanoscale; 2020 Sep; 12(34):17870-17879. PubMed ID: 32840546
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoscale Wetting and Energy Transmission at Solid/Liquid Interfaces.
    Tomko JA; Olson DH; Giri A; Gaskins JT; Donovan BF; O'Malley SM; Hopkins PE
    Langmuir; 2019 Feb; 35(6):2106-2114. PubMed ID: 30624942
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal transport across nanoparticle-fluid interfaces: the interplay of interfacial curvature and nanoparticle-fluid interactions.
    Tascini AS; Armstrong J; Chiavazzo E; Fasano M; Asinari P; Bresme F
    Phys Chem Chem Phys; 2017 Jan; 19(4):3244-3253. PubMed ID: 28083587
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polymeric Self-Assembled Monolayers Anomalously Improve Thermal Transport across Graphene/Polymer Interfaces.
    Zhang L; Liu L
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28949-28958. PubMed ID: 28766936
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of Molecular Polarity in Thermal Transport of Boron Nitride-Organic Molecule Composites.
    Ma R; Wan X; Zhang T; Yang N; Luo T
    ACS Omega; 2018 Oct; 3(10):12530-12534. PubMed ID: 31457986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.