BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36807760)

  • 21. [Application of machine learning model based on XGBoost algorithm in early prediction of patients with acute severe pancreatitis].
    Gao X; Lin J; Wu A; Gu H; Liu X; Yin M; Zhou Z; Zhang R; Xu C; Zhu J
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Apr; 35(4):421-426. PubMed ID: 37308200
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Supervised learning applied to classifying fallers versus non-fallers among older adults with cancer.
    Ramsdale E; Kunduru M; Smith L; Culakova E; Shen J; Meng S; Zand M; Anand A
    J Geriatr Oncol; 2023 May; 14(4):101498. PubMed ID: 37084629
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Develop a radiomics-based machine learning model to predict the stone-free rate post-percutaneous nephrolithotomy.
    Zou XC; Luo CW; Yuan RM; Jin MN; Zeng T; Chao HC
    Urolithiasis; 2024 Apr; 52(1):64. PubMed ID: 38613668
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of Four Machine Learning Techniques for Prediction of Intensive Care Unit Length of Stay in Heart Transplantation Patients.
    Wang K; Yan LZ; Li WZ; Jiang C; Wang NN; Zheng Q; Dong NG; Shi JW
    Front Cardiovasc Med; 2022; 9():863642. PubMed ID: 35800164
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of radiomics for the prediction of HPV status for patients with head and neck cancers.
    Bagher-Ebadian H; Lu M; Siddiqui F; Ghanem AI; Wen N; Wu Q; Liu C; Movsas B; Chetty IJ
    Med Phys; 2020 Feb; 47(2):563-575. PubMed ID: 31853980
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interpretable machine learning model based on the systemic inflammation response index and ultrasound features can predict central lymph node metastasis in cN0T1-T2 papillary thyroid carcinoma.
    Pang J; Yang M; Li J; Zhong X; Shen X; Chen T; Qian L
    Gland Surg; 2023 Nov; 12(11):1485-1499. PubMed ID: 38107491
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predictive modeling of perioperative blood transfusion in lumbar posterior interbody fusion using machine learning.
    Lang FF; Liu LY; Wang SW
    Front Physiol; 2023; 14():1306453. PubMed ID: 38187137
    [No Abstract]   [Full Text] [Related]  

  • 28. Incorporating intraoperative blood pressure time-series variables to assist in prediction of acute kidney injury after type a acute aortic dissection repair: an interpretable machine learning model.
    Dai A; Zhou Z; Jiang F; Guo Y; Asante DO; Feng Y; Huang K; Chen C; Shi H; Si Y; Zou J
    Ann Med; 2023; 55(2):2266458. PubMed ID: 37813109
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interpretable machine learning model to predict surgical difficulty in laparoscopic resection for rectal cancer.
    Yu M; Yuan Z; Li R; Shi B; Wan D; Dong X
    Front Oncol; 2024; 14():1337219. PubMed ID: 38380369
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of Acute Kidney Injury after Extracorporeal Cardiac Surgery (CSA-AKI) by Machine Learning Algorithms.
    Tong Y; Niu X; Liu F
    Heart Surg Forum; 2023 Oct; 26(5):E537-E551. PubMed ID: 37920093
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application and Clinical Value of Machine Learning-Based Cervical Cancer Diagnosis and Prediction Model in Adjuvant Chemotherapy for Cervical Cancer: A Single-Center, Controlled, Non-Arbitrary Size Case-Control Study.
    Wang Y; Shen L; Jin J; Wang G
    Contrast Media Mol Imaging; 2022; 2022():2432291. PubMed ID: 35821886
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Construction and validation of prognostic models in critically Ill patients with sepsis-associated acute kidney injury: interpretable machine learning approach.
    Fan Z; Jiang J; Xiao C; Chen Y; Xia Q; Wang J; Fang M; Wu Z; Chen F
    J Transl Med; 2023 Jun; 21(1):406. PubMed ID: 37349774
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Comparison of machine learning and Logistic regression model in predicting acute kidney injury after cardiac surgery: data analysis based on MIMIC-III database].
    Xiong W; Zhang L; She K; Xu G; Bai S; Liu X
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2022 Nov; 34(11):1188-1193. PubMed ID: 36567564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Radiomics outperforms clinical factors in characterizing human papilloma virus (HPV) for patients with oropharyngeal squamous cell carcinomas.
    Bagher-Ebadian H; Siddiqui F; Ghanem AI; Zhu S; Lu M; Movsas B; Chetty IJ
    Biomed Phys Eng Express; 2022 Jun; 8(4):. PubMed ID: 34781281
    [No Abstract]   [Full Text] [Related]  

  • 35. Preoperative prediction of vessel invasion in locally advanced gastric cancer based on computed tomography radiomics and machine learning.
    Hu ZW; Liang P; Li ZL; Yong LL; Lu H; Wang R; Gao JB
    Oncol Lett; 2023 Jul; 26(1):293. PubMed ID: 37274479
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Technical note: On the development of an outcome-driven frequency filter for improving radiomics-based modeling of human papillomavirus (HPV) in patients with oropharyngeal squamous cell carcinoma.
    Bagher-Ebadian H; Zhu S; Siddiqui F; Lu M; Movsas B; Chetty IJ
    Med Phys; 2021 Nov; 48(11):7552-7562. PubMed ID: 34390003
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The radiomic-clinical model using the SHAP method for assessing the treatment response of whole-brain radiotherapy: a multicentric study.
    Wang Y; Lang J; Zuo JZ; Dong Y; Hu Z; Xu X; Zhang Y; Wang Q; Yang L; Wong STC; Wang H; Li H
    Eur Radiol; 2022 Dec; 32(12):8737-8747. PubMed ID: 35678859
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Early detection of squamous cell carcinoma of the oral tongue using multidimensional plasma protein analysis and interpretable machine learning.
    Gu X; Salehi A; Wang L; Coates PJ; Sgaramella N; Nylander K
    J Oral Pathol Med; 2023 Aug; 52(7):637-643. PubMed ID: 37428440
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interpretable Machine Learning Model for Locoregional Relapse Prediction in Oropharyngeal Cancers.
    Giraud P; Giraud P; Nicolas E; Boisselier P; Alfonsi M; Rives M; Bardet E; Calugaru V; Noel G; Chajon E; Pommier P; Morelle M; Perrier L; Liem X; Burgun A; Bibault JE
    Cancers (Basel); 2020 Dec; 13(1):. PubMed ID: 33379188
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interpretable machine-learning model for Predicting the Convalescent COVID-19 patients with pulmonary diffusing capacity impairment.
    Ma FQ; He C; Yang HR; Hu ZW; Mao HR; Fan CY; Qi Y; Zhang JX; Xu B
    BMC Med Inform Decis Mak; 2023 Aug; 23(1):169. PubMed ID: 37644543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.