BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36807847)

  • 1. Resilience of compound action potential peaks to high-frequency firing in the mouse optic nerve.
    Hopper AJ; Beswick-Jones H; Brown AM
    Physiol Rep; 2023 Feb; 11(4):e15606. PubMed ID: 36807847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between glial potassium regulation and axon excitability: a role for glial Kir4.1 channels.
    Bay V; Butt AM
    Glia; 2012 Apr; 60(4):651-60. PubMed ID: 22290828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A non-linear regression analysis method for quantitative resolution of the stimulus-evoked compound action potential from rodent optic nerve.
    Evans RD; Weston DA; McLaughlin M; Brown AM
    J Neurosci Methods; 2010 Apr; 188(1):174-8. PubMed ID: 20149822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fructose supports energy metabolism of some, but not all, axons in adult mouse optic nerve.
    Allen L; Anderson S; Wender R; Meakin P; Ransom BR; Ray DE; Brown AM
    J Neurophysiol; 2006 Mar; 95(3):1917-25. PubMed ID: 16148269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy transfer from astrocytes to axons: the role of CNS glycogen.
    Brown AM; Baltan Tekkök S; Ransom BR
    Neurochem Int; 2004 Sep; 45(4):529-36. PubMed ID: 15186919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions among diameter, myelination, and the Na/K pump affect axonal resilience to high-frequency spiking.
    Zang Y; Marder E
    Proc Natl Acad Sci U S A; 2021 Aug; 118(32):. PubMed ID: 34353911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fructose metabolism in the adult mouse optic nerve, a central white matter tract.
    Meakin PJ; Fowler MJ; Rathbone AJ; Allen LM; Ransom BR; Ray DE; Brown AM
    J Cereb Blood Flow Metab; 2007 Jan; 27(1):86-99. PubMed ID: 16670697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Action potential conduction and sodium channel content in the optic nerve of the myelin-deficient rat.
    Utzschneider DA; Thio C; Sontheimer H; Ritchie JM; Waxman SG; Kocsis JD
    Proc Biol Sci; 1993 Dec; 254(1341):245-50. PubMed ID: 8108457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological and electrophysiological characterization of the adult Siberian hamster optic nerve.
    James EL; Peacock VA; Ebling FJ; Brown AM
    Anat Sci Int; 2010 Dec; 85(4):214-23. PubMed ID: 20422334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axon conduction and survival in CNS white matter during energy deprivation: a developmental study.
    Fern R; Davis P; Waxman SG; Ransom BR
    J Neurophysiol; 1998 Jan; 79(1):95-105. PubMed ID: 9425180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer of glycogen-derived lactate from astrocytes to axons via specific monocarboxylate transporters supports mouse optic nerve activity.
    Tekkök SB; Brown AM; Westenbroek R; Pellerin L; Ransom BR
    J Neurosci Res; 2005 Sep; 81(5):644-52. PubMed ID: 16015619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity-Dependent Fluctuations in Interstitial [K
    Beswick-Jones H; Hopper AJ; Brown AM
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chloride conductance and extracellular potassium concentration interact to modify the excitability of rat optic nerve fibres.
    Connors BW; Ransom BR
    J Physiol; 1984 Oct; 355():619-33. PubMed ID: 6092630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autophosphorylated CaMKII Facilitates Spike Propagation in Rat Optic Nerve.
    Partida GJ; Fasoli A; Fogli Iseppe A; Ogata G; Johnson JS; Thambiaiyah V; Passaglia CL; Ishida AT
    J Neurosci; 2018 Sep; 38(37):8087-8105. PubMed ID: 30076212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity-dependent extracellular K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps.
    Ransom CB; Ransom BR; Sontheimer H
    J Physiol; 2000 Feb; 522 Pt 3(Pt 3):427-42. PubMed ID: 10713967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic optical signals in the rat optic nerve: role for K(+) uptake via NKCC1 and swelling of astrocytes.
    MacVicar BA; Feighan D; Brown A; Ransom B
    Glia; 2002 Feb; 37(2):114-23. PubMed ID: 11754210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Posttetanic hyperpolarization produced by electrogenic Na(+)-K+ pump in lizard axons impaled near their motor terminals.
    Morita K; David G; Barrett JN; Barrett EF
    J Neurophysiol; 1993 Nov; 70(5):1874-84. PubMed ID: 8294960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion transport and membrane potential in CNS myelinated axons I. Normoxic conditions.
    Leppanen L; Stys PK
    J Neurophysiol; 1997 Oct; 78(4):2086-94. PubMed ID: 9325376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BK Channels Localize to the Paranodal Junction and Regulate Action Potentials in Myelinated Axons of Cerebellar Purkinje Cells.
    Hirono M; Ogawa Y; Misono K; Zollinger DR; Trimmer JS; Rasband MN; Misonou H
    J Neurosci; 2015 May; 35(18):7082-94. PubMed ID: 25948259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How the optic nerve allocates space, energy capacity, and information.
    Perge JA; Koch K; Miller R; Sterling P; Balasubramanian V
    J Neurosci; 2009 Jun; 29(24):7917-28. PubMed ID: 19535603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.