These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 36808185)
1. Detailed analysis of distorted retinal and its interaction with surrounding residues in the K intermediate of bacteriorhodopsin. Taguchi S; Niwa S; Dao HA; Tanaka Y; Takeda R; Fukai S; Hasegawa K; Takeda K Commun Biol; 2023 Feb; 6(1):190. PubMed ID: 36808185 [TBL] [Abstract][Full Text] [Related]
2. Water pathways in the bacteriorhodopsin proton pump. Bondar AN; Fischer S; Smith JC J Membr Biol; 2011 Jan; 239(1-2):73-84. PubMed ID: 21113780 [TBL] [Abstract][Full Text] [Related]
3. Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump. Luecke H Biochim Biophys Acta; 2000 Aug; 1460(1):133-56. PubMed ID: 10984596 [TBL] [Abstract][Full Text] [Related]
4. Hydration switch model for the proton transfer in the Schiff base region of bacteriorhodopsin. Kandori H Biochim Biophys Acta; 2004 Jul; 1658(1-2):72-9. PubMed ID: 15282177 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of proton transport in bacteriorhodopsin from crystallographic structures of the K, L, M1, M2, and M2' intermediates of the photocycle. Lanyi JK; Schobert B J Mol Biol; 2003 Apr; 328(2):439-50. PubMed ID: 12691752 [TBL] [Abstract][Full Text] [Related]
7. Suppression of the back proton-transfer from Asp85 to the retinal Schiff base in bacteriorhodopsin: a theoretical analysis of structural elements. Bondar AN; Suhai S; Fischer S; Smith JC; Elstner M J Struct Biol; 2007 Mar; 157(3):454-69. PubMed ID: 17189704 [TBL] [Abstract][Full Text] [Related]
8. Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin. Sass HJ; Büldt G; Gessenich R; Hehn D; Neff D; Schlesinger R; Berendzen J; Ormos P Nature; 2000 Aug; 406(6796):649-53. PubMed ID: 10949308 [TBL] [Abstract][Full Text] [Related]
9. Key role of electrostatic interactions in bacteriorhodopsin proton transfer. Bondar AN; Fischer S; Smith JC; Elstner M; Suhai S J Am Chem Soc; 2004 Nov; 126(44):14668-77. PubMed ID: 15521787 [TBL] [Abstract][Full Text] [Related]
10. A role for internal water molecules in proton affinity changes in the Schiff base and Asp85 for one-way proton transfer in bacteriorhodopsin. Morgan JE; Gennis RB; Maeda A Photochem Photobiol; 2008; 84(4):1038-45. PubMed ID: 18557823 [TBL] [Abstract][Full Text] [Related]
11. Relocation of internal bound water in bacteriorhodopsin during the photoreaction of M at low temperatures: an FTIR study. Maeda A; Tomson FL; Gennis RB; Kandori H; Ebrey TG; Balashov SP Biochemistry; 2000 Aug; 39(33):10154-62. PubMed ID: 10956004 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of the L intermediate of bacteriorhodopsin: evidence for vertical translocation of a water molecule during the proton pumping cycle. Kouyama T; Nishikawa T; Tokuhisa T; Okumura H J Mol Biol; 2004 Jan; 335(2):531-46. PubMed ID: 14672661 [TBL] [Abstract][Full Text] [Related]
13. FTIR spectroscopy of a light-driven compatible sodium ion-proton pumping rhodopsin at 77 K. Ono H; Inoue K; Abe-Yoshizumi R; Kandori H J Phys Chem B; 2014 May; 118(18):4784-92. PubMed ID: 24773264 [TBL] [Abstract][Full Text] [Related]
14. pKa of the protonated Schiff base and aspartic 85 in the bacteriorhodopsin binding site is controlled by a specific geometry between the two residues. Rousso I; Friedman N; Sheves M; Ottolenghi M Biochemistry; 1995 Sep; 34(37):12059-65. PubMed ID: 7547944 [TBL] [Abstract][Full Text] [Related]
15. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site. Shibata M; Yoshitsugu M; Mizuide N; Ihara K; Kandori H Biochemistry; 2007 Jun; 46(25):7525-35. PubMed ID: 17547422 [TBL] [Abstract][Full Text] [Related]
16. Properties of Asp212----Asn bacteriorhodopsin suggest that Asp212 and Asp85 both participate in a counterion and proton acceptor complex near the Schiff base. Needleman R; Chang M; Ni B; Váró G; Fornés J; White SH; Lanyi JK J Biol Chem; 1991 Jun; 266(18):11478-84. PubMed ID: 1646807 [TBL] [Abstract][Full Text] [Related]
17. Protein, lipid and water organization in bacteriorhodopsin crystals: a molecular view of the purple membrane at 1.9 A resolution. Belrhali H; Nollert P; Royant A; Menzel C; Rosenbusch JP; Landau EM; Pebay-Peyroula E Structure; 1999 Aug; 7(8):909-17. PubMed ID: 10467143 [TBL] [Abstract][Full Text] [Related]
18. Structural changes of pharaonis phoborhodopsin upon photoisomerization of the retinal chromophore: infrared spectral comparison with bacteriorhodopsin. Kandori H; Shimono K; Sudo Y; Iwamoto M; Shichida Y; Kamo N Biochemistry; 2001 Aug; 40(31):9238-46. PubMed ID: 11478891 [TBL] [Abstract][Full Text] [Related]
19. Atomic resolution structures and the mechanism of ion pumping in bacteriorhodopsin. Edmonds BW; Luecke H Front Biosci; 2004 May; 9():1556-66. PubMed ID: 14977567 [TBL] [Abstract][Full Text] [Related]
20. Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution. Luecke H; Schobert B; Richter HT; Cartailler JP; Lanyi JK Science; 1999 Oct; 286(5438):255-61. PubMed ID: 10514362 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]