These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36808187)

  • 1. ecmtool: fast and memory-efficient enumeration of elementary conversion modes.
    Buchner B; Clement TJ; de Groot DH; Zanghellini J
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36808187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unlocking Elementary Conversion Modes: ecmtool Unveils All Capabilities of Metabolic Networks.
    Clement TJ; Baalhuis EB; Teusink B; Bruggeman FJ; Planqué R; de Groot DH
    Patterns (N Y); 2021 Jan; 2(1):100177. PubMed ID: 33511367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EFMlrs: a Python package for elementary flux mode enumeration via lexicographic reverse search.
    Buchner BA; Zanghellini J
    BMC Bioinformatics; 2021 Nov; 22(1):547. PubMed ID: 34758748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. tEFMA: computing thermodynamically feasible elementary flux modes in metabolic networks.
    Gerstl MP; Jungreuthmayer C; Zanghellini J
    Bioinformatics; 2015 Jul; 31(13):2232-4. PubMed ID: 25701571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MCS2: minimal coordinated supports for fast enumeration of minimal cut sets in metabolic networks.
    Miraskarshahi R; Zabeti H; Stephen T; Chindelevitch L
    Bioinformatics; 2019 Jul; 35(14):i615-i623. PubMed ID: 31510702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential computation of elementary modes and minimal cut sets in genome-scale metabolic networks using alternate integer linear programming.
    Song HS; Goldberg N; Mahajan A; Ramkrishna D
    Bioinformatics; 2017 Aug; 33(15):2345-2353. PubMed ID: 28369193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boosting the extraction of elementary flux modes in genome-scale metabolic networks using the linear programming approach.
    Guil F; Hidalgo JF; García JM
    Bioinformatics; 2020 Aug; 36(14):4163-4170. PubMed ID: 32348455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FluxModeCalculator: an efficient tool for large-scale flux mode computation.
    van Klinken JB; Willems van Dijk K
    Bioinformatics; 2016 Apr; 32(8):1265-6. PubMed ID: 26685305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flux tope analysis: studying the coordination of reaction directions in metabolic networks.
    Gerstl MP; Müller S; Regensburger G; Zanghellini J
    Bioinformatics; 2019 Jan; 35(2):266-273. PubMed ID: 30649351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flux modules in metabolic networks.
    Müller AC; Bockmayr A
    J Math Biol; 2014 Nov; 69(5):1151-79. PubMed ID: 24141488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete enumeration of elementary flux modes through scalable demand-based subnetwork definition.
    Hunt KA; Folsom JP; Taffs RL; Carlson RP
    Bioinformatics; 2014 Jun; 30(11):1569-78. PubMed ID: 24497502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Random sampling of elementary flux modes in large-scale metabolic networks.
    Machado D; Soons Z; Patil KR; Ferreira EC; Rocha I
    Bioinformatics; 2012 Sep; 28(18):i515-i521. PubMed ID: 22962475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Principal metabolic flux mode analysis.
    Bhadra S; Blomberg P; Castillo S; Rousu J
    Bioinformatics; 2018 Jul; 34(14):2409-2417. PubMed ID: 29420676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decomposing flux distributions into elementary flux modes in genome-scale metabolic networks.
    Chan SH; Ji P
    Bioinformatics; 2011 Aug; 27(16):2256-62. PubMed ID: 21685054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A scalable method for parameter identification in kinetic models of metabolism using steady-state data.
    Srinivasan S; Cluett WR; Mahadevan R
    Bioinformatics; 2019 Dec; 35(24):5216-5225. PubMed ID: 31197317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Avoiding the Enumeration of Infeasible Elementary Flux Modes by Including Transcriptional Regulatory Rules in the Enumeration Process Saves Computational Costs.
    Jungreuthmayer C; Ruckerbauer DE; Gerstl MP; Hanscho M; Zanghellini J
    PLoS One; 2015; 10(6):e0129840. PubMed ID: 26091045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CoBAMP: a Python framework for metabolic pathway analysis in constraint-based models.
    Vieira V; Rocha M
    Bioinformatics; 2019 Dec; 35(24):5361-5362. PubMed ID: 31359031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerating flux balance calculations in genome-scale metabolic models by localizing the application of loopless constraints.
    Chan SHJ; Wang L; Dash S; Maranas CD
    Bioinformatics; 2018 Dec; 34(24):4248-4255. PubMed ID: 29868725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimal cut sets in a metabolic network are elementary modes in a dual network.
    Ballerstein K; von Kamp A; Klamt S; Haus UU
    Bioinformatics; 2012 Feb; 28(3):381-7. PubMed ID: 22190691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale computation of elementary flux modes with bit pattern trees.
    Terzer M; Stelling J
    Bioinformatics; 2008 Oct; 24(19):2229-35. PubMed ID: 18676417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.