These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36808190)

  • 21. Facile and Large-Scale Fabrication of Sub-3 nm PtNi Nanoparticles Supported on Porous Carbon Sheet: A Bifunctional Material for the Hydrogen Evolution Reaction and Hydrogenation.
    Li J; Liu L; Ai Y; Hu Z; Xie L; Bao H; Wu J; Tian H; Guo R; Ren S; Xu W; Sun H; Zhang G; Liang Q
    Chemistry; 2019 May; 25(29):7191-7200. PubMed ID: 30913325
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A facile approach to fabricate halloysite/metal nanocomposites with preformed and in situ synthesized metal nanoparticles: a comparative study of their enhanced catalytic activity.
    Das S; Jana S
    Dalton Trans; 2015 May; 44(19):8906-16. PubMed ID: 25871741
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly stable Pt-Co bimetallic catalysts prepared by atomic layer deposition for selective hydrogenation of cinnamaldehyde.
    Wang K; He X; Wang JC; Liang X
    Nanotechnology; 2022 Mar; 33(21):. PubMed ID: 35168219
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Construction of novel photocatalysts for efficient hydrogen evolution: The key role of natural halloysite nanotubes.
    Zhang H; Wang L; Liu Z; Su Y; Du C
    J Colloid Interface Sci; 2023 Nov; 650(Pt B):1211-1224. PubMed ID: 37478738
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Palladium nanoparticles deposited on silanized halloysite nanotubes: synthesis, characterization and enhanced catalytic property.
    Zhang Y; He X; Ouyang J; Yang H
    Sci Rep; 2013 Oct; 3():2948. PubMed ID: 24126604
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly selective Pt/ordered mesoporous TiO2-SiO2 catalysts for hydrogenation of cinnamaldehyde: The promoting role of Ti(2.).
    Wu Q; Zhang C; Zhang B; Li X; Ying Z; Liu T; Lin W; Yu Y; Cheng H; Zhao F
    J Colloid Interface Sci; 2016 Feb; 463():75-82. PubMed ID: 26520813
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selectivity control in Pt-catalyzed cinnamaldehyde hydrogenation.
    Durndell LJ; Parlett CM; Hondow NS; Isaacs MA; Wilson K; Lee AF
    Sci Rep; 2015 Mar; 5():9425. PubMed ID: 25800551
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Au-Ag and Pt-Ag bimetallic nanoparticles@halloysite nanotubes: morphological modulation, improvement of thermal stability and catalytic performance.
    Li S; Tang F; Wang H; Feng J; Jin Z
    RSC Adv; 2018 Mar; 8(19):10237-10245. PubMed ID: 35540453
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amine-Functionalized Natural Halloysite Nanotubes Supported Metallic (Pd, Au, Ag) Nanoparticles and Their Catalytic Performance for Dehydrogenation of Formic Acid.
    Song L; Tan K; Ye Y; Zhu B; Zhang S; Huang W
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889634
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Halloysite Nanotubes Supported Ag and ZnO Nanoparticles with Synergistically Enhanced Antibacterial Activity.
    Shu Z; Zhang Y; Yang Q; Yang H
    Nanoscale Res Lett; 2017 Dec; 12(1):135. PubMed ID: 28235369
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ruling Factors in Cinnamaldehyde Hydrogenation: Activity and Selectivity of Pt-Mo Catalysts.
    Stucchi M; Manzoli M; Bossola F; Villa A; Prati L
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33535585
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Support Morphology Effect on Selective Hydrogenation of 3-Nitrostyrene to 3-Vinylaniline over Pt/α-Fe
    Dai C; Zhang Y; Chen J; Zhong X; Zhang L; Zhang B
    Chemistry; 2022 Jun; 28(34):e202200199. PubMed ID: 35543283
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Zirconium-based MOF nanocrystals confined on amphoteric halloysite nanotubes for promoting the catalytic hydrolysis of an organophosphorus nerve agent simulant.
    Li S; Zhang H; Wu G; Wu J; Hou H
    Dalton Trans; 2023 May; 52(20):6899-6905. PubMed ID: 37158285
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of interfacial charge and the particle size of titanate nanotube-supported Pt nanoparticles on the hydrogenation of cinnamaldehyde.
    Chiu TC; Lee HY; Li PH; Chao JH; Lin CH
    Nanotechnology; 2013 Mar; 24(11):115601. PubMed ID: 23448895
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of Co(OH)2 coated Pt nanoparticles as an efficient catalyst for chemoselective hydrogenation of halonitrobenzenes.
    Cheng H; Meng X; Wang Q; Ming J; Yu Y; Zhao F
    J Colloid Interface Sci; 2012 Jul; 377(1):322-7. PubMed ID: 22487229
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amphiphilic Mesoporous Sandwich-Structured Catalysts for Selective Hydrogenation of 4-Nitrostyrene in Water.
    Wei X; Zhou M; Zhang X; Wang X; Wu Z
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):39116-39124. PubMed ID: 31569941
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation of halloysite nanotube-supported gold nanocomposite for solvent-free oxidation of benzyl alcohol.
    Fu X; Ding Z; Zhang X; Weng W; Xu Y; Liao J; Xie Z
    Nanoscale Res Lett; 2014; 9(1):282. PubMed ID: 24948899
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual-atom Pt heterogeneous catalyst with excellent catalytic performances for the selective hydrogenation and epoxidation.
    Tian S; Wang B; Gong W; He Z; Xu Q; Chen W; Zhang Q; Zhu Y; Yang J; Fu Q; Chen C; Bu Y; Gu L; Sun X; Zhao H; Wang D; Li Y
    Nat Commun; 2021 May; 12(1):3181. PubMed ID: 34039986
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxygen Vacancy-Induced Metal-Support Interactions in AuPd/ZrO
    Chen Y; Sun L; Li Y; Cao Y; Guan W; Pan J; Zhang Z; Zhang Y
    Inorg Chem; 2023 Sep; 62(37):15277-15292. PubMed ID: 37656824
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of catalysts with fine platinum particles supported by high-surface-area activated carbons and optimization of their catalytic activities for polymer electrolyte fuel cells.
    Rahman MM; Inaba K; Batnyagt G; Saikawa M; Kato Y; Awata R; Delgertsetsega B; Kaneta Y; Higashi K; Uruga T; Iwasawa Y; Ui K; Takeguchi T
    RSC Adv; 2021 Jun; 11(33):20601-20611. PubMed ID: 35479922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.