These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 36808939)

  • 21. Enhanced tissue infiltration and bone regeneration through spatiotemporal delivery of bioactive factors from polyelectrolytes modified biomimetic scaffold.
    Zhou X; Wang Z; Li T; Liu Z; Sun X; Wang W; Chen L; He C
    Mater Today Bio; 2023 Jun; 20():100681. PubMed ID: 37304580
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect.
    Li L; Zhou G; Wang Y; Yang G; Ding S; Zhou S
    Biomaterials; 2015 Jan; 37():218-29. PubMed ID: 25453952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation.
    Yao Q; Cosme JG; Xu T; Miszuk JM; Picciani PH; Fong H; Sun H
    Biomaterials; 2017 Jan; 115():115-127. PubMed ID: 27886552
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Berberine-releasing electrospun scaffold induces osteogenic differentiation of DPSCs and accelerates bone repair.
    Ma L; Yu Y; Liu H; Sun W; Lin Z; Liu C; Miao L
    Sci Rep; 2021 Jan; 11(1):1027. PubMed ID: 33441759
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Elastic 3D-Printed Nanofibers Composite Scaffold for Bone Tissue Engineering.
    Cai P; Li C; Ding Y; Lu H; Yu X; Cui J; Yu F; Wang H; Wu J; El-Newehy M; Abdulhameed MM; Song L; Mo X; Sun B
    ACS Appl Mater Interfaces; 2023 Nov; 15(47):54280-54293. PubMed ID: 37973614
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D-porous β-tricalcium phosphate-alginate-gelatin scaffold with DMOG delivery promotes angiogenesis and bone formation in rat calvarial defects.
    Jahangir S; Hosseini S; Mostafaei F; Sayahpour FA; Baghaban Eslaminejad M
    J Mater Sci Mater Med; 2018 Dec; 30(1):1. PubMed ID: 30564959
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D printing of Haversian bone-mimicking scaffolds for multicellular delivery in bone regeneration.
    Zhang M; Lin R; Wang X; Xue J; Deng C; Feng C; Zhuang H; Ma J; Qin C; Wan L; Chang J; Wu C
    Sci Adv; 2020 Mar; 6(12):eaaz6725. PubMed ID: 32219170
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial Delivery of Triple Functional Nanoparticles via an Extracellular Matrix-Mimicking Coaxial Scaffold Synergistically Enhancing Bone Regeneration.
    Xing D; Zuo W; Chen J; Ma B; Cheng X; Zhou X; Qian Y
    ACS Appl Mater Interfaces; 2022 Aug; 14(33):37380-37395. PubMed ID: 35946874
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.
    Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L
    Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Osteogenic differentiation and bone regeneration of iPSC-MSCs supported by a biomimetic nanofibrous scaffold.
    Xie J; Peng C; Zhao Q; Wang X; Yuan H; Yang L; Li K; Lou X; Zhang Y
    Acta Biomater; 2016 Jan; 29():365-379. PubMed ID: 26441129
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Novel 3D-bioprinted Porous Nano Attapulgite Scaffolds with Good Performance for Bone Regeneration.
    Wang Z; Hui A; Zhao H; Ye X; Zhang C; Wang A; Zhang C
    Int J Nanomedicine; 2020; 15():6945-6960. PubMed ID: 33061361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Delivery of dimethyloxallyl glycine in mesoporous bioactive glass scaffolds to improve angiogenesis and osteogenesis of human bone marrow stromal cells.
    Wu C; Zhou Y; Chang J; Xiao Y
    Acta Biomater; 2013 Nov; 9(11):9159-68. PubMed ID: 23811216
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D printing of gear-inspired biomaterials: Immunomodulation and bone regeneration.
    Yu X; Wang Y; Zhang M; Ma H; Feng C; Zhang B; Wang X; Ma B; Yao Q; Wu C
    Acta Biomater; 2023 Jan; 156():222-233. PubMed ID: 36100177
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrated polycaprolactone microsphere-based scaffolds with biomimetic hierarchy and tunable vascularization for osteochondral repair.
    Gu X; Zha Y; Li Y; Chen J; Liu S; Du Y; Zhang S; Wang J
    Acta Biomater; 2022 Mar; 141():190-197. PubMed ID: 35041901
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of nanocomposite/nanofibrous functionally graded biomimetic scaffolds for osteochondral tissue regeneration.
    Hejazi F; Bagheri-Khoulenjani S; Olov N; Zeini D; Solouk A; Mirzadeh H
    J Biomed Mater Res A; 2021 Sep; 109(9):1657-1669. PubMed ID: 33687800
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Indirect co-culture of osteoblasts and endothelial cells in vitro based on a biomimetic 3D composite hydrogel scaffold to promote the proliferation and differentiation of osteoblasts.
    Li C; Chen G; Wang Y; Xu W; Hu M
    PLoS One; 2024; 19(3):e0298689. PubMed ID: 38527040
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The synergistic effects of graphene-contained 3D-printed calcium silicate/poly-ε-caprolactone scaffolds promote FGFR-induced osteogenic/angiogenic differentiation of mesenchymal stem cells.
    Lin YH; Chuang TY; Chiang WH; Chen IP; Wang K; Shie MY; Chen YW
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109887. PubMed ID: 31500024
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immobilizing magnesium ions on 3D printed porous tantalum scaffolds with polydopamine for improved vascularization and osteogenesis.
    Ma L; Cheng S; Ji X; Zhou Y; Zhang Y; Li Q; Tan C; Peng F; Zhang Y; Huang W
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111303. PubMed ID: 32919664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabricating vascularized, anatomically accurate bone grafts using 3D bioprinted sectional bone modules, in-situ angiogenesis, BMP-2 controlled release, and bioassembly.
    Grottkau BE; Hui Z; Ran C; Pang Y
    Biofabrication; 2024 Jul; 16(4):. PubMed ID: 39012007
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D bioprinted gelatin/gellan gum-based scaffold with double-crosslinking network for vascularized bone regeneration.
    Li Z; Li S; Yang J; Ha Y; Zhang Q; Zhou X; He C
    Carbohydr Polym; 2022 Aug; 290():119469. PubMed ID: 35550764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.