These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36809057)

  • 1. Gene Deletion Algorithms for Minimum Reaction Network Design by Mixed-Integer Linear Programming for Metabolite Production in Constraint-Based Models: gDel_minRN.
    Tamura T; Muto-Fujita A; Tohsato Y; Kosaka T
    J Comput Biol; 2023 May; 30(5):553-568. PubMed ID: 36809057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trimming Gene Deletion Strategies for Growth-Coupled Production in Constraint-Based Metabolic Networks: TrimGdel.
    Tamura T
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1540-1549. PubMed ID: 35731759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential computation of elementary modes and minimal cut sets in genome-scale metabolic networks using alternate integer linear programming.
    Song HS; Goldberg N; Mahajan A; Ramkrishna D
    Bioinformatics; 2017 Aug; 33(15):2345-2353. PubMed ID: 28369193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grid-based computational methods for the design of constraint-based parsimonious chemical reaction networks to simulate metabolite production: GridProd.
    Tamura T
    BMC Bioinformatics; 2018 Sep; 19(1):325. PubMed ID: 30217144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MetNetComp: Database for Minimal and Maximal Gene-Deletion Strategies for Growth-Coupled Production of Genome-Scale Metabolic Networks.
    Tamura T
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3748-3758. PubMed ID: 37738189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CoBAMP: a Python framework for metabolic pathway analysis in constraint-based models.
    Vieira V; Rocha M
    Bioinformatics; 2019 Dec; 35(24):5361-5362. PubMed ID: 31359031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mixed-integer linear programming approach to the reduction of genome-scale metabolic networks.
    Röhl A; Bockmayr A
    BMC Bioinformatics; 2017 Jan; 18(1):2. PubMed ID: 28049424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast-SL: an efficient algorithm to identify synthetic lethal sets in metabolic networks.
    Pratapa A; Balachandran S; Raman K
    Bioinformatics; 2015 Oct; 31(20):3299-305. PubMed ID: 26085504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Solution Space Division-Based Methods for Calculating Reaction Deletion Strategies for Constraint-Based Metabolic Networks for Substance Production: DynCubeProd.
    Ma Y; Tamura T
    Front Bioinform; 2021; 1():716112. PubMed ID: 36303731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast-SNP: a fast matrix pre-processing algorithm for efficient loopless flux optimization of metabolic models.
    Saa PA; Nielsen LK
    Bioinformatics; 2016 Dec; 32(24):3807-3814. PubMed ID: 27559155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integer programming-based method for designing synthetic metabolic networks by Minimum Reaction Insertion in a Boolean model.
    Lu W; Tamura T; Song J; Akutsu T
    PLoS One; 2014; 9(3):e92637. PubMed ID: 24651476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerating flux balance calculations in genome-scale metabolic models by localizing the application of loopless constraints.
    Chan SHJ; Wang L; Dash S; Maranas CD
    Bioinformatics; 2018 Dec; 34(24):4248-4255. PubMed ID: 29868725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of Boolean metabolic networks: integer linear programming based approach.
    Qiu Y; Jiang H; Ching WK; Cheng X
    BMC Syst Biol; 2018 Apr; 12(Suppl 1):7. PubMed ID: 29671395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TRFBA: an algorithm to integrate genome-scale metabolic and transcriptional regulatory networks with incorporation of expression data.
    Motamedian E; Mohammadi M; Shojaosadati SA; Heydari M
    Bioinformatics; 2017 Apr; 33(7):1057-1063. PubMed ID: 28065897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alignment of biological networks by integer linear programming: virus-host protein-protein interaction networks.
    Llabrés M; Riera G; Rosselló F; Valiente G
    BMC Bioinformatics; 2020 Nov; 21(Suppl 6):434. PubMed ID: 33203352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FastMM: an efficient toolbox for personalized constraint-based metabolic modeling.
    Li GH; Dai S; Han F; Li W; Huang J; Xiao W
    BMC Bioinformatics; 2020 Feb; 21(1):67. PubMed ID: 32085724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TIGER: Toolbox for integrating genome-scale metabolic models, expression data, and transcriptional regulatory networks.
    Jensen PA; Lutz KA; Papin JA
    BMC Syst Biol; 2011 Sep; 5():147. PubMed ID: 21943338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. OptEnvelope: A target point guided method for growth-coupled production using knockouts.
    Motamedian E; Berzins K; Muiznieks R; Stalidzans E
    PLoS One; 2023; 18(11):e0294313. PubMed ID: 37972019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficiently gap-filling reaction networks.
    Latendresse M
    BMC Bioinformatics; 2014 Jun; 15():225. PubMed ID: 24972703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosome structures: reduction of certain problems with unequal gene content and gene paralogs to integer linear programming.
    Lyubetsky V; Gershgorin R; Gorbunov K
    BMC Bioinformatics; 2017 Dec; 18(1):537. PubMed ID: 29212445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.