These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 36809237)
1. Kinome inhibition states and multiomics data enable prediction of cell viability in diverse cancer types. Berginski ME; Joisa CU; Golitz BT; Gomez SM PLoS Comput Biol; 2023 Feb; 19(2):e1010888. PubMed ID: 36809237 [TBL] [Abstract][Full Text] [Related]
2. Integrated single-dose kinome profiling data is predictive of cancer cell line sensitivity to kinase inhibitors. Joisa CU; Chen KA; Berginski ME; Golitz BT; Jenner MR; Herrera Loeza G; Yeh JJ; Gomez SM PeerJ; 2023; 11():e16342. PubMed ID: 38025707 [TBL] [Abstract][Full Text] [Related]
3. Kinome state is predictive of cell viability in pancreatic cancer tumor and cancer-associated fibroblast cell lines. Berginski ME; Jenner MR; Joisa CU; Herrera Loeza G; Golitz BT; Lipner MB; Leary JR; Rashid N; Johnson GL; Yeh JJ; Gomez SM PeerJ; 2024; 12():e17797. PubMed ID: 39221276 [TBL] [Abstract][Full Text] [Related]
4. Combined kinome inhibition states are predictive of cancer cell line sensitivity to kinase inhibitor combination therapies. Joisa CU; Chen KA; Beville S; Stuhlmiller T; Berginski ME; Okumu D; Golitz BT; East MP; Johnson GL; Gomez SM Pac Symp Biocomput; 2024; 29():276-290. PubMed ID: 38160286 [TBL] [Abstract][Full Text] [Related]
5. Combined kinome inhibition states are predictive of cancer cell line sensitivity to kinase inhibitor combination therapies. Joisa CU; Chen KA; Beville S; Stuhlmiller T; Berginski ME; Okumu D; Golitz BT; Johnson GL; Gomez SM bioRxiv; 2023 Aug; ():. PubMed ID: 37577663 [TBL] [Abstract][Full Text] [Related]
6. The Development and Application of KinomePro-DL: A Deep Learning Based Online Small Molecule Kinome Selectivity Profiling Prediction Platform. Ma W; Hu J; Chen Z; Ai Y; Zhang Y; Dong K; Meng X; Liu L J Chem Inf Model; 2024 Oct; 64(19):7273-7290. PubMed ID: 39320984 [TBL] [Abstract][Full Text] [Related]
7. A targeted quantitative proteomics strategy for global kinome profiling of cancer cells and tissues. Xiao Y; Guo L; Wang Y Mol Cell Proteomics; 2014 Apr; 13(4):1065-75. PubMed ID: 24520089 [TBL] [Abstract][Full Text] [Related]
8. Prediction of kinase inhibitor response using activity profiling, in vitro screening, and elastic net regression. Tran TP; Ong E; Hodges AP; Paternostro G; Piermarocchi C BMC Syst Biol; 2014 Jun; 8():74. PubMed ID: 24961498 [TBL] [Abstract][Full Text] [Related]
9. Identification of selective cytotoxic and synthetic lethal drug responses in triple negative breast cancer cells. Gautam P; Karhinen L; Szwajda A; Jha SK; Yadav B; Aittokallio T; Wennerberg K Mol Cancer; 2016 May; 15(1):34. PubMed ID: 27165605 [TBL] [Abstract][Full Text] [Related]
10. Quantitative chemical proteomics reveals new potential drug targets in head and neck cancer. Wu Z; Doondeea JB; Gholami AM; Janning MC; Lemeer S; Kramer K; Eccles SA; Gollin SM; Grenman R; Walch A; Feller SM; Kuster B Mol Cell Proteomics; 2011 Dec; 10(12):M111.011635. PubMed ID: 21955398 [TBL] [Abstract][Full Text] [Related]
11. Unprecedently Large-Scale Kinase Inhibitor Set Enabling the Accurate Prediction of Compound-Kinase Activities: A Way toward Selective Promiscuity by Design? Christmann-Franck S; van Westen GJ; Papadatos G; Beltran Escudie F; Roberts A; Overington JP; Domine D J Chem Inf Model; 2016 Sep; 56(9):1654-75. PubMed ID: 27482722 [TBL] [Abstract][Full Text] [Related]
12. Kinome-Wide Profiling Prediction of Small Molecules. Sorgenfrei FA; Fulle S; Merget B ChemMedChem; 2018 Mar; 13(6):495-499. PubMed ID: 28544552 [TBL] [Abstract][Full Text] [Related]
13. Proteomic analysis defines kinase taxonomies specific for subtypes of breast cancer. Collins KAL; Stuhlmiller TJ; Zawistowski JS; East MP; Pham TT; Hall CR; Goulet DR; Bevill SM; Angus SP; Velarde SH; Sciaky N; Oprea TI; Graves LM; Johnson GL; Gomez SM Oncotarget; 2018 Mar; 9(21):15480-15497. PubMed ID: 29643987 [TBL] [Abstract][Full Text] [Related]
14. The dynamic nature of the kinome. Graves LM; Duncan JS; Whittle MC; Johnson GL Biochem J; 2013 Feb; 450(1):1-8. PubMed ID: 23343193 [TBL] [Abstract][Full Text] [Related]
15. Large-scale proteomics analysis of the human kinome. Oppermann FS; Gnad F; Olsen JV; Hornberger R; Greff Z; Kéri G; Mann M; Daub H Mol Cell Proteomics; 2009 Jul; 8(7):1751-64. PubMed ID: 19369195 [TBL] [Abstract][Full Text] [Related]
16. INTEGRATING GENETIC AND STRUCTURAL DATA ON HUMAN PROTEIN KINOME IN NETWORK-BASED MODELING OF KINASE SENSITIVITIES AND RESISTANCE TO TARGETED AND PERSONALIZED ANTICANCER DRUGS. Verkhivker GM Pac Symp Biocomput; 2016; 21():45-56. PubMed ID: 26776172 [TBL] [Abstract][Full Text] [Related]
17. KinScan: AI-based rapid profiling of activity across the kinome. Brahma R; Shin JM; Cho KH Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37985454 [TBL] [Abstract][Full Text] [Related]
18. Combined inhibition of AXL, Lyn and p130Cas kinases block migration of triple negative breast cancer cells. Pénzes K; Baumann C; Szabadkai I; Orfi L; Kéri G; Ullrich A; Torka R Cancer Biol Ther; 2014; 15(11):1571-82. PubMed ID: 25482942 [TBL] [Abstract][Full Text] [Related]
19. The Clinical Kinase Index: A Method to Prioritize Understudied Kinases as Drug Targets for the Treatment of Cancer. Essegian D; Khurana R; Stathias V; Schürer SC Cell Rep Med; 2020 Oct; 1(7):100128. PubMed ID: 33205077 [TBL] [Abstract][Full Text] [Related]
20. Extending kinome coverage by analysis of kinase inhibitor broad profiling data. Jacoby E; Tresadern G; Bembenek S; Wroblowski B; Buyck C; Neefs JM; Rassokhin D; Poncelet A; Hunt J; van Vlijmen H Drug Discov Today; 2015 Jun; 20(6):652-8. PubMed ID: 25596550 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]