These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 36809616)
1. Degradation of atrazine in river sediment by dielectric barrier discharge plasma (DBDP) combined with a persulfate (PS) oxidation system: response surface methodology, degradation mechanisms, and pathways. Lu H; Gao W; Deng C; Liu X; Li W; Yu Z; Ding H; Zhang L Environ Sci Pollut Res Int; 2023 Apr; 30(17):51303-51313. PubMed ID: 36809616 [TBL] [Abstract][Full Text] [Related]
2. Effect of dielectric barrier discharge plasma on persulfate activation for rapid degradation of atrazine: Optimization, mechanism and energy consumption. Shen T; Wang X; Xu P; Yang C; Li J; Wang P; Zhang G Environ Res; 2022 Sep; 212(Pt B):113287. PubMed ID: 35483407 [TBL] [Abstract][Full Text] [Related]
3. Degradation of the typical herbicide atrazine by UV/persulfate: kinetics and mechanisms. Liu Y; Ji X; Yang J; Tang W; Zhu Y; Wang Y; Zhang Y; Zhang Y; Duan J; Li W Environ Sci Pollut Res Int; 2022 Jun; 29(29):43928-43941. PubMed ID: 35122644 [TBL] [Abstract][Full Text] [Related]
4. Degradation of atrazine by electroactivation of persulfate using FeCuO@C modified composite cathode: Synergistic activation mechanism. Zeng X; Shi X; Sun Z Chemosphere; 2023 Aug; 332():138860. PubMed ID: 37150455 [TBL] [Abstract][Full Text] [Related]
5. Degradation of aqueous atrazine using persulfate activated by electrochemical plasma coupling with microbubbles: removal mechanisms and potential applications. Wang Q; Zhang A; Li P; Héroux P; Zhang H; Yu X; Liu Y J Hazard Mater; 2021 Feb; 403():124087. PubMed ID: 33265066 [TBL] [Abstract][Full Text] [Related]
6. Synergistic degradation of fluorene in soil by dielectric barrier discharge plasma combined with P25/NH Lu H; Deng C; Yu Z; Zhang D; Li W; Huang J; Bao T; Liu X Chemosphere; 2022 Jun; 296():133950. PubMed ID: 35176305 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous atrazine degradation and E. coli inactivation by UV/S Popova S; Matafonova G; Batoev V Ecotoxicol Environ Saf; 2019 Mar; 169():169-177. PubMed ID: 30447517 [TBL] [Abstract][Full Text] [Related]
8. Design of a multi-electrode dielectric barrier discharge reactor and experimental study on the degradation of atrazine in water. Shen X; Yang Y; Zhang J; He F Environ Sci Pollut Res Int; 2024 May; 31(23):33561-33579. PubMed ID: 38683430 [TBL] [Abstract][Full Text] [Related]
9. The radical and non-radical oxidation mechanism of electrochemically activated persulfate process on different cathodes in divided and undivided cell. Cai J; Zhou M; Zhang Q; Tian Y; Song G J Hazard Mater; 2021 Aug; 416():125804. PubMed ID: 33865104 [TBL] [Abstract][Full Text] [Related]
10. Degradation of Atrazine, Simazine and Ametryn in an arable soil using thermal-activated persulfate oxidation process: Optimization, kinetics, and degradation pathway. Jiang C; Yang Y; Zhang L; Lu D; Lu L; Yang X; Cai T J Hazard Mater; 2020 Dec; 400():123201. PubMed ID: 32947740 [TBL] [Abstract][Full Text] [Related]
11. Pyrite enables persulfate activation for efficient atrazine degradation. Wang X; Wang Y; Chen N; Shi Y; Zhang L Chemosphere; 2020 Apr; 244():125568. PubMed ID: 32050347 [TBL] [Abstract][Full Text] [Related]
12. Carbon and hydrogen isotopic evidence for atrazine degradation by electro-activated persulfate: Radical contributions and comparisons with heat-activated persulfate. Li J; Wang T; Liang E Environ Pollut; 2024 Jan; 341():122892. PubMed ID: 37952922 [TBL] [Abstract][Full Text] [Related]
13. Simulation and comparative study on the oxidation kinetics of atrazine by UV/H₂O₂, UV/HSO₅⁻ and UV/S₂O₈²⁻. Luo C; Ma J; Jiang J; Liu Y; Song Y; Yang Y; Guan Y; Wu D Water Res; 2015 Sep; 80():99-108. PubMed ID: 25996757 [TBL] [Abstract][Full Text] [Related]
14. Oxidation of atrazine in aqueous media by solar- enhanced Fenton-like process involving persulfate and ferrous ion. Khandarkhaeva M; Batoeva A; Aseev D; Sizykh M; Tsydenova O Ecotoxicol Environ Saf; 2017 Mar; 137():35-41. PubMed ID: 27907844 [TBL] [Abstract][Full Text] [Related]
15. Dielectric barrier discharge plasma coupled with WO Wang H; Shen Z; Yan X; Guo H; Mao D; Yi C Chemosphere; 2021 Jul; 274():129722. PubMed ID: 33540320 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous atrazine degradation and E. coli inactivation by simulated solar photo-Fenton-like process using persulfate. Garkusheva N; Matafonova G; Tsenter I; Beck S; Batoev V; Linden K J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jul; 52(9):849-855. PubMed ID: 28448750 [TBL] [Abstract][Full Text] [Related]
17. Constant oxidation of atrazine in Fe(III)/PDS system by enhancing Fe(III)/Fe(II) cycle with quinones: Reaction mechanism, degradation pathway and DFT calculation. An Y; Li X; Liu Z; Li Y; Zhou Z; Liu X Chemosphere; 2023 Mar; 317():137883. PubMed ID: 36693481 [TBL] [Abstract][Full Text] [Related]
18. Degradation of atrazine by electrochemically activated persulfate using BDD anode: Role of radicals and influencing factors. Bu L; Zhu S; Zhou S Chemosphere; 2018 Mar; 195():236-244. PubMed ID: 29268181 [TBL] [Abstract][Full Text] [Related]
19. Removal of atrazine by biochar-supported zero-valent iron catalyzed persulfate oxidation: Reactivity, radical production and transformation pathway. Jiang Z; Li J; Jiang D; Gao Y; Chen Y; Wang W; Cao B; Tao Y; Wang L; Zhang Y Environ Res; 2020 May; 184():109260. PubMed ID: 32113024 [TBL] [Abstract][Full Text] [Related]
20. Effective degradation of atrazine by spinach-derived biochar via persulfate activation system: Process optimization, mechanism, degradation pathway and application in real wastewater. El-Bestawy EA; Gaber M; Shokry H; Samy M Environ Res; 2023 Jul; 229():115987. PubMed ID: 37116677 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]