These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 36809832)
41. The Short Time Exposure (STE) test for predicting eye irritation potential: intra-laboratory reproducibility and correspondence to globally harmonized system (GHS) and EU eye irritation classification for 109 chemicals. Takahashi Y; Hayashi K; Abo T; Koike M; Sakaguchi H; Nishiyama N Toxicol In Vitro; 2011 Oct; 25(7):1425-34. PubMed ID: 21513790 [TBL] [Abstract][Full Text] [Related]
42. The usefulness of the validated SkinEthic™ RHE test method to identify skin corrosive UN GHS subcategories. Alépée N; Robert C; Tornier C; Cotovio J Toxicol In Vitro; 2014 Jun; 28(4):616-25. PubMed ID: 24389111 [TBL] [Abstract][Full Text] [Related]
43. Validation of the OptiSafe™ eye irritation test. Choksi N; Lebrun S; Nguyen M; Daniel A; DeGeorge G; Willoughby J; Layton A; Lowther D; Merrill J; Matheson J; Barroso J; Yozzo K; Casey W; Allen D Cutan Ocul Toxicol; 2020 Sep; 39(3):180-192. PubMed ID: 32586141 [TBL] [Abstract][Full Text] [Related]
44. Assessment of the eye irritation potential of chemicals: A comparison study between two test methods based on human 3D hemi-cornea models. Tandon R; Bartok M; Zorn-Kruppa M; Brandner JM; Gabel D; Engelke M Toxicol In Vitro; 2015 Dec; 30(1 Pt B):561-8. PubMed ID: 26362509 [TBL] [Abstract][Full Text] [Related]
45. Overall performance of Bovine Corneal Opacity and Permeability (BCOP) Laser Light-Based Opacitometer (LLBO) test method with regard to solid and liquid chemicals testing. Adriaens E; Verstraelen S; Desprez B; Alépée N; Abo T; Bagley D; Hibatallah J; Mewes KR; Pfannenbecker U; Van Rompay AR Toxicol In Vitro; 2021 Feb; 70():105044. PubMed ID: 33130054 [TBL] [Abstract][Full Text] [Related]
46. Inter-laboratory study of short time exposure (STE) test for predicting eye irritation potential of chemicals and correspondence to globally harmonized system (GHS) classification. Takahashi Y; Hayashi T; Watanabe S; Hayashi K; Koike M; Aisawa N; Ebata S; Sakaguchi H; Nakamura T; Kuwahara H; Nishiyama N J Toxicol Sci; 2009 Dec; 34(6):611-26. PubMed ID: 19952497 [TBL] [Abstract][Full Text] [Related]
47. Evaluation of a tiered in vitro testing strategy for assessing the ocular and dermal irritation/corrosion potential of pharmaceutical compounds for worker safety. Graham JC; Wilt N; Costin GE; Villano C; Bader J; Krawiec L; Sly E; Gould J Cutan Ocul Toxicol; 2018 Dec; 37(4):380-390. PubMed ID: 30035615 [TBL] [Abstract][Full Text] [Related]
48. Tiered application of the neutral red release and EpiOcular™ assays for evaluating the eye irritation potential of agrochemical formulations. Settivari RS; Amado RA; Corvaro M; Visconti NR; Kan L; Carney EW; Boverhof DR; Gehen SC Regul Toxicol Pharmacol; 2016 Nov; 81():407-420. PubMed ID: 27693708 [TBL] [Abstract][Full Text] [Related]
49. An in vitro depth of injury prediction model for a histopathologic classification of EPA and GHS eye irritants. Lebrun S; Xie Y; Chavez S; Chan R; Jester JV Toxicol In Vitro; 2019 Dec; 61():104628. PubMed ID: 31419508 [TBL] [Abstract][Full Text] [Related]
50. Alternative methods for the replacement of eye irritation testing. Lotz C; Schmid FF; Rossi A; Kurdyn S; Kampik D; De Wever B; Walles H; Groeber FK ALTEX; 2016; 33(1):55-67. PubMed ID: 26626125 [TBL] [Abstract][Full Text] [Related]
51. Multi-laboratory Validation Study of the Vitrigel-Eye Irritancy Test Method as an Alternative to Kojima H; Yamaguchi H; Sozu T; Kleinstreuer N; Chae-Hyung L; Chen W; Watanabe M; Fukuda T; Yamashita K; Takezawa T Altern Lab Anim; 2019; 47(3-4):140-157. PubMed ID: 31838865 [TBL] [Abstract][Full Text] [Related]
52. Development of an Eye Irritation Test Method Using an In-House Fabrication of a Reconstructed Human Cornea-like Epithelium Model for Eye Hazard Identification. Yamamoto N; Hiramatsu N; Kato Y; Sato A; Kojima H Bioengineering (Basel); 2024 Mar; 11(4):. PubMed ID: 38671724 [TBL] [Abstract][Full Text] [Related]
53. Statistical analysis of the reproducibility and predictive capacity of MCTT HCE™ eye irritation test, a me-too test method for OECD TG 492. Lim SE; Lee D; Bae S; Lim KM Regul Toxicol Pharmacol; 2019 Oct; 107():104430. PubMed ID: 31325533 [TBL] [Abstract][Full Text] [Related]
55. Predictive performance of the Short Time Exposure test for identifying eye irritation potential of chemical mixtures. Saito K; Miyazawa M; Nukada Y; Ei K; Abo T; Sakaguchi H Toxicol In Vitro; 2015 Apr; 29(3):617-20. PubMed ID: 25681760 [TBL] [Abstract][Full Text] [Related]
56. Predictive performance of the Vitrigel-eye irritancy test method using 118 chemicals. Yamaguchi H; Kojima H; Takezawa T J Appl Toxicol; 2016 Aug; 36(8):1025-37. PubMed ID: 26472347 [TBL] [Abstract][Full Text] [Related]
57. The EpiOcular Eye Irritation Test (EIT) for hazard identification and labelling of eye irritating chemicals: protocol optimisation for solid materials and the results after extended shipment. Kaluzhny Y; Kandárová H; Handa Y; DeLuca J; Truong T; Hunter A; Kearney P; d'Argembeau-Thornton L; Klausner M Altern Lab Anim; 2015 May; 43(2):101-27. PubMed ID: 25995013 [TBL] [Abstract][Full Text] [Related]
58. Kang Y; Jeong B; Lim DH; Lee D; Lim KM J Toxicol Environ Health A; 2021 Dec; 84(23):960-972. PubMed ID: 34328061 [TBL] [Abstract][Full Text] [Related]
59. CON4EI: Short Time Exposure (STE) test method for hazard identification and labelling of eye irritating chemicals. Adriaens E; Willoughby JA; Meyer BR; Blakeman LC; Alépée N; Fochtman P; Guest R; Kandarova H; Verstraelen S; Van Rompay AR Toxicol In Vitro; 2018 Jun; 49():65-76. PubMed ID: 28801046 [TBL] [Abstract][Full Text] [Related]
60. Prediction of eye irritation potential of surfactant-based rinse-off personal care formulations by the bovine corneal opacity and permeability (BCOP) assay. Cater KC; Harbell JW Cutan Ocul Toxicol; 2006; 25(3):217-33. PubMed ID: 16980247 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]