BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36809854)

  • 1. Mild Divergent Semireductive Transformations of Secondary and Tertiary Amides via Zirconocene Hydride Catalysis.
    Kehner RA; Zhang G; Bayeh-Romero L
    J Am Chem Soc; 2023 Mar; 145(9):4921-4927. PubMed ID: 36809854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled and chemoselective reduction of secondary amides.
    Pelletier G; Bechara WS; Charette AB
    J Am Chem Soc; 2010 Sep; 132(37):12817-9. PubMed ID: 20735125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemoselective Reduction of Tertiary Amides under Thermal Control: Formation of either Aldehydes or Amines.
    Tinnis F; Volkov A; Slagbrand T; Adolfsson H
    Angew Chem Int Ed Engl; 2016 Mar; 55(14):4562-6. PubMed ID: 26934055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reductive Alkenylation of Ketimines via Hydride Transfer from Aldehydes.
    Azaz T; Mourya H; Singh V; Ram B; Tiwari B
    J Org Chem; 2023 Jan; 88(1):632-639. PubMed ID: 36475729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi-catalytic reduction of secondary amides to imines and aldehydes.
    Lee SH; Nikonov GI
    Dalton Trans; 2014 Jun; 43(23):8888-93. PubMed ID: 24798570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective Reduction of Secondary Amides to Imines Catalysed by Schwartz's Reagent.
    Donnelly LJ; Berthet JC; Cantat T
    Angew Chem Int Ed Engl; 2022 Aug; 61(33):e202206170. PubMed ID: 35582898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expanding Zirconocene Hydride Catalysis:
    Kehner RA; Hewitt MC; Bayeh-Romero L
    ACS Catal; 2022 Feb; 12(3):1758-1763. PubMed ID: 35685613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zinc-catalyzed chemoselective reduction of tertiary and secondary amides to amines.
    Das S; Addis D; Junge K; Beller M
    Chemistry; 2011 Oct; 17(43):12186-92. PubMed ID: 21915925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A metalloenzyme-like catalytic system for the chemoselective oxidative cross-coupling of primary amines to imines under ambient conditions.
    Largeron M; Fleury MB
    Chemistry; 2015 Feb; 21(9):3815-20. PubMed ID: 25643811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multicatalysis protocol enables direct and versatile enantioselective reductive transformations of secondary amides.
    Chen H; Wu ZZ; Shao DY; Huang PQ
    Sci Adv; 2022 Nov; 8(47):eade3431. PubMed ID: 36417504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesoionic N-Heterocyclic Imines as Super Nucleophiles in Catalytic Couplings of Amides with CO
    Das A; Sarkar P; Maji S; Pati SK; Mandal SK
    Angew Chem Int Ed Engl; 2022 Dec; 61(51):e202213614. PubMed ID: 36259383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper-catalyzed oxidative amidation of aldehydes with amine salts: synthesis of primary, secondary, and tertiary amides.
    Ghosh SC; Ngiam JS; Seayad AM; Tuan DT; Chai CL; Chen A
    J Org Chem; 2012 Sep; 77(18):8007-15. PubMed ID: 22894712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An advance on exploring N-tert-butanesulfinyl imines in asymmetric synthesis of chiral amines.
    Lin GQ; Xu MH; Zhong YW; Sun XW
    Acc Chem Res; 2008 Jul; 41(7):831-40. PubMed ID: 18533688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphite-supported gold nanoparticles as efficient catalyst for aerobic oxidation of benzylic amines to imines and N-substituted 1,2,3,4-tetrahydroisoquinolines to amides: synthetic applications and mechanistic study.
    So MH; Liu Y; Ho CM; Che CM
    Chem Asian J; 2009 Oct; 4(10):1551-61. PubMed ID: 19777526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric Synthesis of Propargylic α-Stereogenic Tertiary Amines by Reductive Alkynylation of Tertiary Amides Using Ir/Cu Tandem Catalysis.
    Agrawal T; Perez-Morales KD; Cort JA; Sieber JD
    J Org Chem; 2022 May; 87(9):6387-6392. PubMed ID: 35435681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of Secondary Carboxamides to Imines.
    Schedler DJ; Li J; Ganem B
    J Org Chem; 1996 Jun; 61(12):4115-4119. PubMed ID: 11667291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-Pot Amide Bond Formation from Aldehydes and Amines via a Photoorganocatalytic Activation of Aldehydes.
    Papadopoulos GN; Kokotos CG
    J Org Chem; 2016 Aug; 81(16):7023-8. PubMed ID: 27227271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled Reduction of Tertiary Amides to the Corresponding Alcohols, Aldehydes, or Amines Using Dialkylboranes and Aminoborohydride Reagents.
    Bailey CL; Joh AY; Hurley ZQ; Anderson CL; Singaram B
    J Org Chem; 2016 May; 81(9):3619-28. PubMed ID: 27035215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Practical synthesis of allylic amines
    Xiao WG; Xuan B; Xiao LJ; Zhou QL
    Chem Sci; 2023 Aug; 14(32):8644-8650. PubMed ID: 37592986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TBAT-Catalyzed Deoxygenative Reduction of Tertiary Amides to Amines.
    Vinayagam V; Sadhukhan SK; Karre SK; Srinath R; Maroju RK; Karra PR; Bathula HSNB; Kundrapu S; Surukonti SR
    Org Lett; 2023 Jun; 25(25):4610-4614. PubMed ID: 37338092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.