These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 36810105)

  • 1. Synthesizing multi-frame high-resolution fluorescein angiography images from retinal fundus images using generative adversarial networks.
    Li P; He Y; Wang P; Wang J; Shi G; Chen Y
    Biomed Eng Online; 2023 Feb; 22(1):16. PubMed ID: 36810105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple-ResNet GAN: An enhanced high-resolution image generation method for translation from fundus structure image to fluorescein angiography.
    Yuan J; Gao W; Fang Y; Zhang H; Song N
    Med Biol Eng Comput; 2024 Sep; ():. PubMed ID: 39264569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lesion-aware generative adversarial networks for color fundus image to fundus fluorescein angiography translation.
    Huang K; Li M; Yu J; Miao J; Hu Z; Yuan S; Chen Q
    Comput Methods Programs Biomed; 2023 Feb; 229():107306. PubMed ID: 36580822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsupervised arterial spin labeling image superresolution via multiscale generative adversarial network.
    Cui J; Gong K; Han P; Liu H; Li Q
    Med Phys; 2022 Apr; 49(4):2373-2385. PubMed ID: 35048390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perception-oriented generative adversarial network for retinal fundus image super-resolution.
    Zhao L; Chi H; Zhong T; Jia Y
    Comput Biol Med; 2024 Jan; 168():107708. PubMed ID: 37995535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AMD-GAN: Attention encoder and multi-branch structure based generative adversarial networks for fundus disease detection from scanning laser ophthalmoscopy images.
    Xie H; Lei H; Zeng X; He Y; Chen G; Elazab A; Yue G; Wang J; Zhang G; Lei B
    Neural Netw; 2020 Dec; 132():477-490. PubMed ID: 33039786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generating Synthesized Fluorescein Angiography Images From Color Fundus Images by Generative Adversarial Networks for Macular Edema Assessment.
    Xie X; Jiachu D; Liu C; Xie M; Guo J; Cai K; Li X; Mi W; Ye H; Luo L; Yang J; Zhang M; Zheng C
    Transl Vis Sci Technol; 2024 Sep; 13(9):26. PubMed ID: 39312216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HRGAN: A Generative Adversarial Network Producing Higher-Resolution Images than Training Sets.
    Park M; Lee M; Yu S
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal image synthesis from multiple-landmarks input with generative adversarial networks.
    Yu Z; Xiang Q; Meng J; Kou C; Ren Q; Lu Y
    Biomed Eng Online; 2019 May; 18(1):62. PubMed ID: 31113438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel deep learning conditional generative adversarial network for producing angiography images from retinal fundus photographs.
    Tavakkoli A; Kamran SA; Hossain KF; Zuckerbrod SL
    Sci Rep; 2020 Dec; 10(1):21580. PubMed ID: 33299065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Texture transformer super-resolution for low-dose computed tomography.
    Zhou S; Yu L; Jin M
    Biomed Phys Eng Express; 2022 Nov; 8(6):. PubMed ID: 36301699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinal fundus image super-resolution based on generative adversarial network guided with vascular structure prior.
    Jia Y; Chen G; Chi H
    Sci Rep; 2024 Oct; 14(1):22786. PubMed ID: 39354105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesizing high-resolution magnetic resonance imaging using parallel cycle-consistent generative adversarial networks for fast magnetic resonance imaging.
    Xie H; Lei Y; Wang T; Roper J; Dhabaan AH; Bradley JD; Liu T; Mao H; Yang X
    Med Phys; 2022 Jan; 49(1):357-369. PubMed ID: 34821395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FA-GAN: Fused attentive generative adversarial networks for MRI image super-resolution.
    Jiang M; Zhi M; Wei L; Yang X; Zhang J; Li Y; Wang P; Huang J; Yang G
    Comput Med Imaging Graph; 2021 Sep; 92():101969. PubMed ID: 34411966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FA4SANS-GAN: A Novel Machine Learning Generative Adversarial Network to Further Understand Ophthalmic Changes in Spaceflight Associated Neuro-Ocular Syndrome (SANS).
    Kamran SA; Hossain KF; Ong J; Waisberg E; Zaman N; Baker SA; Lee AG; Tavakkoli A
    Ophthalmol Sci; 2024; 4(4):100493. PubMed ID: 38682031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fundus GAN - GAN-based Fundus Image Synthesis for Training Retinal Image Classifiers.
    Shenkut D; Bhagavatula V
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2185-2189. PubMed ID: 36086632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motion artifact removal in coronary CT angiography based on generative adversarial networks.
    Zhang L; Jiang B; Chen Q; Wang L; Zhao K; Zhang Y; Vliegenthart R; Xie X
    Eur Radiol; 2023 Jan; 33(1):43-53. PubMed ID: 35829786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning segmentation of non-perfusion area from color fundus images and AI-generated fluorescein angiography.
    Masayoshi K; Katada Y; Ozawa N; Ibuki M; Negishi K; Kurihara T
    Sci Rep; 2024 May; 14(1):10801. PubMed ID: 38734727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UWAFA-GAN: Ultra-Wide-Angle Fluorescein Angiography Transformation via Multi-Scale Generation and Registration Enhancement.
    Ge R; Fang Z; Wei P; Chen Z; Jiang H; Elazab A; Li W; Wan X; Zhang S; Wang C
    IEEE J Biomed Health Inform; 2024 Aug; 28(8):4820-4829. PubMed ID: 38683721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Super-Resolution Reconstruction of CT Images Based on Multi-scale Information Fused Generative Adversarial Networks.
    Liu X; Su S; Gu W; Yao T; Shen J; Mo Y
    Ann Biomed Eng; 2024 Jan; 52(1):57-70. PubMed ID: 38064116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.