These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 36810135)
1. Exploring celebrity influence on public attitude towards the COVID-19 pandemic: social media shared sentiment analysis. White BM; Melton C; Zareie P; Davis RL; Bednarczyk RA; Shaban-Nejad A BMJ Health Care Inform; 2023 Jan; 30(1):. PubMed ID: 36810135 [TBL] [Abstract][Full Text] [Related]
2. Fine-tuned Sentiment Analysis of COVID-19 Vaccine-Related Social Media Data: Comparative Study. Melton CA; White BM; Davis RL; Bednarczyk RA; Shaban-Nejad A J Med Internet Res; 2022 Oct; 24(10):e40408. PubMed ID: 36174192 [TBL] [Abstract][Full Text] [Related]
3. Public Sentiment and Discourse on Domestic Violence During the COVID-19 Pandemic in Australia: Analysis of Social Media Posts. Usher K; Durkin J; Martin S; Vanderslott S; Vindrola-Padros C; Usher L; Jackson D J Med Internet Res; 2021 Oct; 23(10):e29025. PubMed ID: 34519659 [TBL] [Abstract][Full Text] [Related]
4. Tracking Public Attitudes Toward COVID-19 Vaccination on Tweets in Canada: Using Aspect-Based Sentiment Analysis. Jang H; Rempel E; Roe I; Adu P; Carenini G; Janjua NZ J Med Internet Res; 2022 Mar; 24(3):e35016. PubMed ID: 35275835 [TBL] [Abstract][Full Text] [Related]
5. COVID-19 Vaccine-Related Discussion on Twitter: Topic Modeling and Sentiment Analysis. Lyu JC; Han EL; Luli GK J Med Internet Res; 2021 Jun; 23(6):e24435. PubMed ID: 34115608 [TBL] [Abstract][Full Text] [Related]
6. Verification in the Early Stages of the COVID-19 Pandemic: Sentiment Analysis of Japanese Twitter Users. Ueda R; Han F; Zhang H; Aoki T; Ogasawara K JMIR Infodemiology; 2024 Feb; 4():e37881. PubMed ID: 38127840 [TBL] [Abstract][Full Text] [Related]
7. Monitoring User Opinions and Side Effects on COVID-19 Vaccines in the Twittersphere: Infodemiology Study of Tweets. Portelli B; Scaboro S; Tonino R; Chersoni E; Santus E; Serra G J Med Internet Res; 2022 May; 24(5):e35115. PubMed ID: 35446781 [TBL] [Abstract][Full Text] [Related]
8. Topics and Sentiments of Public Concerns Regarding COVID-19 Vaccines: Social Media Trend Analysis. Monselise M; Chang CH; Ferreira G; Yang R; Yang CC J Med Internet Res; 2021 Oct; 23(10):e30765. PubMed ID: 34581682 [TBL] [Abstract][Full Text] [Related]
9. Exploring the Chinese Public's Perception of Omicron Variants on Social Media: LDA-Based Topic Modeling and Sentiment Analysis. Wang H; Sun K; Wang Y Int J Environ Res Public Health; 2022 Jul; 19(14):. PubMed ID: 35886225 [TBL] [Abstract][Full Text] [Related]
10. Social Network Analysis of COVID-19 Sentiments: Application of Artificial Intelligence. Hung M; Lauren E; Hon ES; Birmingham WC; Xu J; Su S; Hon SD; Park J; Dang P; Lipsky MS J Med Internet Res; 2020 Aug; 22(8):e22590. PubMed ID: 32750001 [TBL] [Abstract][Full Text] [Related]
11. COVID-19 Vaccine Tweets After Vaccine Rollout: Sentiment-Based Topic Modeling. Huangfu L; Mo Y; Zhang P; Zeng DD; He S J Med Internet Res; 2022 Feb; 24(2):e31726. PubMed ID: 34783665 [TBL] [Abstract][Full Text] [Related]
12. Seeking and Providing Social Support on Twitter for Trauma and Distress During the COVID-19 Pandemic: Content and Sentiment Analysis. Esener Y; McCall T; Lakdawala A; Kim H J Med Internet Res; 2023 Aug; 25():e46343. PubMed ID: 37651178 [TBL] [Abstract][Full Text] [Related]
13. Sentiment and emotion trends in nurses' tweets about the COVID-19 pandemic. Xavier T; Lambert J J Nurs Scholarsh; 2022 Sep; 54(5):613-622. PubMed ID: 35343050 [TBL] [Abstract][Full Text] [Related]
14. Exploring Public Emotions on Obesity During the COVID-19 Pandemic Using Sentiment Analysis and Topic Modeling: Cross-Sectional Study. Correia JC; Ahmad SS; Waqas A; Meraj H; Pataky Z J Med Internet Res; 2024 Oct; 26():e52142. PubMed ID: 39393064 [TBL] [Abstract][Full Text] [Related]
15. Patterns of diverse and changing sentiments towards COVID-19 vaccines: a sentiment analysis study integrating 11 million tweets and surveillance data across over 180 countries. Wang H; Li Y; Hutch MR; Kline AS; Otero S; Mithal LB; Miller ES; Naidech A; Luo Y J Am Med Inform Assoc; 2023 Apr; 30(5):923-931. PubMed ID: 36821435 [TBL] [Abstract][Full Text] [Related]
16. Temporal and Emotional Variations in People's Perceptions of Mass Epidemic Infectious Disease After the COVID-19 Pandemic Using Influenza A as an Example: Topic Modeling and Sentiment Analysis Based on Weibo Data. Dai J; Lyu F; Yu L; He Y J Med Internet Res; 2023 Nov; 25():e49300. PubMed ID: 37917144 [TBL] [Abstract][Full Text] [Related]
17. Emotions and Topics Expressed on Twitter During the COVID-19 Pandemic in the United Kingdom: Comparative Geolocation and Text Mining Analysis. Alhuzali H; Zhang T; Ananiadou S J Med Internet Res; 2022 Oct; 24(10):e40323. PubMed ID: 36150046 [TBL] [Abstract][Full Text] [Related]
18. Long-term Effects of the COVID-19 Pandemic on Public Sentiments in Mainland China: Sentiment Analysis of Social Media Posts. Tan H; Peng SL; Zhu CP; You Z; Miao MC; Kuai SG J Med Internet Res; 2021 Aug; 23(8):e29150. PubMed ID: 34280118 [TBL] [Abstract][Full Text] [Related]
19. Twitter sentiment analysis from Iran about COVID 19 vaccine. Bokaee Nezhad Z; Deihimi MA Diabetes Metab Syndr; 2022 Jan; 16(1):102367. PubMed ID: 34933273 [TBL] [Abstract][Full Text] [Related]
20. Emotion diffusion effect: Negative sentiment COVID-19 tweets of public organizations attract more responses from followers. Yu H; Yang CC; Yu P; Liu K PLoS One; 2022; 17(3):e0264794. PubMed ID: 35259181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]